ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Guangchun Zhang, Albert Hsieh, Won Sik Yang, Yeon Sang Jung
Nuclear Science and Engineering | Volume 193 | Number 8 | August 2019 | Pages 828-853
Technical Paper | doi.org/10.1080/00295639.2018.1560854
Articles are hosted by Taylor and Francis Online.
This paper presents the new acceleration schemes implemented in the three-dimensional (3-D) transport solver PROTEUS-MOC in conjunction with the fixed-point iteration (FPI) methods based on a single generalized minimal residual (GMRES) iteration and one or two transport sweeps per group in each outer iteration. In order to adopt a FPI scheme that employs only one or two inner iterations, single- and two-level consistent partial current–based coarse-mesh finite difference (pCMFD) acceleration methods were implemented to remove the instability problem of the consistent coarse-mesh finite difference (CMFD) method encountered when the inner iteration convergence is not sufficiently tight. In the spatial two-level acceleration method to speed up the lower-order diffusion calculations, the first level solves a fine-mesh finite difference fixed-source problem and the second level solves a CMFD eigenvalue problem. The implemented acceleration schemes were tested using the C5G7 benchmark problems, a critical core configuration of the Transient Reactor Test Facility (TREAT), and a C5G7 transient benchmark problem. Numerical test results showed that the consistent pCMFD acceleration is always stable even for the FPI methods with one inner iteration and that the single transport sweep method is always more efficient than the single GMRES iteration method. It was also observed that the two-level pCMFD acceleration in conjunction with the FPI with single transport sweep per outer iteration is very effective in reducing the number of outer iterations and the lower-order diffusion calculation time. Compared to the current iteration scheme of PROTEUS-MOC with fully converged GMRES iteration without acceleration, this acceleration reduced the total computational time by factors of 33.7, 19.9, and 26.0 for the two-dimensional C5G7, 3-D C5G7, and TREAT M8CAL criticality problems, respectively. The gain was even much larger for transient fixed-source problems (TFSPs) that are near critical. The speedup factor was 100 for one TFSP with subcriticality level of 40 mk and 519 for another TFSP with subcriticality level of 9 mk.