ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Guangchun Zhang, Albert Hsieh, Won Sik Yang, Yeon Sang Jung
Nuclear Science and Engineering | Volume 193 | Number 8 | August 2019 | Pages 828-853
Technical Paper | doi.org/10.1080/00295639.2018.1560854
Articles are hosted by Taylor and Francis Online.
This paper presents the new acceleration schemes implemented in the three-dimensional (3-D) transport solver PROTEUS-MOC in conjunction with the fixed-point iteration (FPI) methods based on a single generalized minimal residual (GMRES) iteration and one or two transport sweeps per group in each outer iteration. In order to adopt a FPI scheme that employs only one or two inner iterations, single- and two-level consistent partial current–based coarse-mesh finite difference (pCMFD) acceleration methods were implemented to remove the instability problem of the consistent coarse-mesh finite difference (CMFD) method encountered when the inner iteration convergence is not sufficiently tight. In the spatial two-level acceleration method to speed up the lower-order diffusion calculations, the first level solves a fine-mesh finite difference fixed-source problem and the second level solves a CMFD eigenvalue problem. The implemented acceleration schemes were tested using the C5G7 benchmark problems, a critical core configuration of the Transient Reactor Test Facility (TREAT), and a C5G7 transient benchmark problem. Numerical test results showed that the consistent pCMFD acceleration is always stable even for the FPI methods with one inner iteration and that the single transport sweep method is always more efficient than the single GMRES iteration method. It was also observed that the two-level pCMFD acceleration in conjunction with the FPI with single transport sweep per outer iteration is very effective in reducing the number of outer iterations and the lower-order diffusion calculation time. Compared to the current iteration scheme of PROTEUS-MOC with fully converged GMRES iteration without acceleration, this acceleration reduced the total computational time by factors of 33.7, 19.9, and 26.0 for the two-dimensional C5G7, 3-D C5G7, and TREAT M8CAL criticality problems, respectively. The gain was even much larger for transient fixed-source problems (TFSPs) that are near critical. The speedup factor was 100 for one TFSP with subcriticality level of 40 mk and 519 for another TFSP with subcriticality level of 9 mk.