ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Dan Gabriel Cacuci
Nuclear Science and Engineering | Volume 193 | Number 7 | July 2019 | Pages 681-721
Technical Paper | doi.org/10.1080/00295639.2018.1564504
Articles are hosted by Taylor and Francis Online.
For over 60 years, the Roussopoulos and Schwinger functionals have been used in many works and textbooks under the assumption that they provide “second-order accurate” trial functions for the forward and adjoint fluxes when computing reaction rates and/or particle detector responses in source-driven nuclear systems. The Schwinger functional has been employed as a particularly useful form of the Roussopoulos functional for systems in which the forward and adjoint particle fluxes were normalized. When using these functionals, however, the expressions for the approximate fluxes were postulated arbitrarily while the system parameters were unrealistically assumed to be perfectly well known. This work revisits the Roussopoulos and Schwinger functionals within the realistic practical context of imprecisely known model parameters, including imprecisely known cross sections, number densities, fission spectra, and forward and adjoint sources. By applying the Second-Order Adjoint Sensitivity Analysis (2nd-ASAM) methodology, this work shows that the first-order sensitivities of the Roussopoulos and Schwinger functionals to model parameters are not identically zero. This fact implies that neither the Roussopoulos nor the Schwinger functionals are accurate to second order in parameter variations/uncertainties, which implies, in turn, that these functionals are not accurate to second order variations in the flux when such flux-variations are caused by imprecisely known model parameters. Furthermore, the 2nd-ASAM methodology applied in this work also provides exactly and efficiently all of the second-order sensitivities of the Roussopoulos and Schwinger functionals to the imprecisely known model parameters. The new results presented in this work place in the correct light the results published hitherto in works that have used the Roussopoulos and Schwinger functionals while also indicating the correct path for future possible uses of these functionals for performing sensitivity and uncertainty analyses of both forward and inverse problems in nuclear systems.