ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yongping Wang, Yunzhao Li, Tengfei Zhang, E. E. Lewis, M. A. Smith, W. S. Yang, Hongchun Wu
Nuclear Science and Engineering | Volume 193 | Number 6 | June 2019 | Pages 652-662
Technical Note | doi.org/10.1080/00295639.2018.1542883
Articles are hosted by Taylor and Francis Online.
The Generalized Partitioned Matrix (GPM) acceleration method for the Variational Nodal Method (VNM) with diffusion approximation is presented. In the GPM method, the vectors of expansion coefficients of the scalar flux, source, and partial currents are divided into low-order and high-order terms. For each outer iteration, the low-order terms of the flux, fission source, and partial currents are first solved with fixed higher-order terms from the preceding outer iteration, and then a full matrix sweep through the energy groups is performed to update the full set of expansion coefficients. The GPM method increases the CPU time per outer iteration but reduces the overall computational time significantly by reducing the number of outer iterations required for convergence. The GPM acceleration method has been implemented in the NODAL code, and its performance was compared with that of the traditional Partitioned Matrix (PM) acceleration scheme for four problems: two- and three-dimensional C5G7 problems, a NuScale modular core problem, and a large pressurized water reactor problem. The numerical results show that the PM acceleration consistently reduces the computational time by a factor of 2.0 and the GPM acceleration yields two to three times higher speedup than with PM acceleration by reducing the number of outer iterations. The GPM speedups over the unaccelerated VNM range between 4.3 and 6.3. Moreover, the speedup ratio achieved with the GPM acceleration increases with an increasing dominance ratio of the problem since the required number of outer iterations increases with an increasing dominance ratio.