ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Abdelghafar Galahom
Nuclear Science and Engineering | Volume 193 | Number 6 | June 2019 | Pages 638-651
Technical Paper | doi.org/10.1080/00295639.2018.1560757
Articles are hosted by Taylor and Francis Online.
This work presents a comparison between the homogeneous and heterogeneous [seed-blanket (SB)] fuel assembly used in the VVER-1200 core. The MCNPX 2.7 code with the ENDF/B-VII.0 data library was used to investigate the possible advantages that can be achieved when the SB assembly is used instead of homogeneous assembly. Thorium-232 was used as a fertile material in the blanket region and different fissile materials were investigated in the seed region. The neutronic characteristics of the presented designs were investigated by comparing four different combinations of fissile materials with (Th,U)O2 that were distributed uniformly through the whole assembly. The radial power distribution was investigated in both homogeneous and SB assemblies. The power distribution is flatter in the homogeneous assembly than the heterogeneous assembly. The suggested fuels in the SB assembly achieved a longer fuel cycle than the homogeneous assembly. Neutronic parameters related to reactor safety operation, such as control rod worth, Doppler reactivity coefficient, and effective delayed neutron fraction βeff have been investigated for the suggested fuel types. The SB assembly achieved a higher conversion ratio than the homogeneous assembly. Therefore, the fissile inventory ratio decreased more slowly with burnup in the case of SB than in the homogeneous assembly. Using 232Th instead of 238U reduced the production of the plutonium and the transuranic atoms.