ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Aaron M. Graham, Benjamin S. Collins, Thomas J. Downar
Nuclear Science and Engineering | Volume 193 | Number 6 | June 2019 | Pages 601-621
Technical Paper | doi.org/10.1080/00295639.2018.1550988
Articles are hosted by Taylor and Francis Online.
The MPACT code is being jointly developed by the University of Michigan and Oak Ridge National Laboratory. It uses the 2-D/1-D method to solve neutron transport problems for reactors. The 2-D/1-D method decomposes the problem into a stack of 2-D planes and uses a high-fidelity transport method to resolve all heterogeneity in each plane. These planes are then coupled axially, using a lower-order solver. With this scheme, three-dimensional (3-D) solutions to the transport equation can be obtained at a much lower cost. The 2-D/1-D method assumes that the materials are axially homogeneous for each 2-D plane. Violation of this assumption requires homogenization, which can significantly reduce the accuracy of the calculation. This paper presents the subray method of characteristics (subray MOC) as a solution to this problem. Subray MOC is a subgrid method that allows local heterogeneities to be directly resolved by method of characteristics while treating the rest of the 2-D plane as axially uniform. This improves the accuracy in the neighborhood of the heterogeneity while minimizing the increase in run time. The method was applied to variations of the C5G7 benchmark problems and compared with a previously developed subgrid method called the subplane collision probabilities (SCP) method. Comparisons were made among results obtained using subray MOC, the SCP method, and no subgrid method. Subray MOC consistently performed best, reducing maximum 3-D power distribution errors from as high as 30% to 2% or less. Furthermore, it consistently outperformed the SCP method with run times that were shorter than the reference calculations.