ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Aaron M. Graham, Benjamin S. Collins, Thomas J. Downar
Nuclear Science and Engineering | Volume 193 | Number 6 | June 2019 | Pages 601-621
Technical Paper | doi.org/10.1080/00295639.2018.1550988
Articles are hosted by Taylor and Francis Online.
The MPACT code is being jointly developed by the University of Michigan and Oak Ridge National Laboratory. It uses the 2-D/1-D method to solve neutron transport problems for reactors. The 2-D/1-D method decomposes the problem into a stack of 2-D planes and uses a high-fidelity transport method to resolve all heterogeneity in each plane. These planes are then coupled axially, using a lower-order solver. With this scheme, three-dimensional (3-D) solutions to the transport equation can be obtained at a much lower cost. The 2-D/1-D method assumes that the materials are axially homogeneous for each 2-D plane. Violation of this assumption requires homogenization, which can significantly reduce the accuracy of the calculation. This paper presents the subray method of characteristics (subray MOC) as a solution to this problem. Subray MOC is a subgrid method that allows local heterogeneities to be directly resolved by method of characteristics while treating the rest of the 2-D plane as axially uniform. This improves the accuracy in the neighborhood of the heterogeneity while minimizing the increase in run time. The method was applied to variations of the C5G7 benchmark problems and compared with a previously developed subgrid method called the subplane collision probabilities (SCP) method. Comparisons were made among results obtained using subray MOC, the SCP method, and no subgrid method. Subray MOC consistently performed best, reducing maximum 3-D power distribution errors from as high as 30% to 2% or less. Furthermore, it consistently outperformed the SCP method with run times that were shorter than the reference calculations.