ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
DeeEarl Vaden, Tae-Sic Yoo
Nuclear Science and Engineering | Volume 193 | Number 5 | May 2019 | Pages 549-553
Technical Note | doi.org/10.1080/00295639.2018.1542879
Articles are hosted by Taylor and Francis Online.
This technical note discusses radioactive decay computation with multiple source terms with heterogeneous introduction dates to the system. Two methods are considered: (1) decaying in sequence from the oldest dated source, ad finitium, to the final decay date and (2) decaying each source term to the final decay date and summing the resulting nuclides. We prove that radioactive decay computation using the prescribed two methods produces the same result. The algorithmic advantage of the second method over the first one is formally argued. The radioactive decay of 90Sr with multiple initial decay dates is given as an illustrative example.