ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. A. Gomez, P. E. Koehler, T. E. Cutler, A. DeYoung, J. T. Goorley, J. D. Hutchinson, G. McKenzie, G. L. Morgan, S. M. Mosby, W. L. Myers, R. S. Rundberg, V. W. Yuan
Nuclear Science and Engineering | Volume 193 | Number 5 | May 2019 | Pages 537-548
Technical Paper | doi.org/10.1080/00295639.2018.1545956
Articles are hosted by Taylor and Francis Online.
Neutron diagnosed subcritical experiments (NDSEs) aim to measure the fission chain decay of subcritical test objects initiated by neutrons from an external source. The ultimate goal of future NDSEs is to make such measurements on dynamic subcritical objects as they are imploded. As a step toward that goal, we made measurements on three static subcritical assemblies containing highly enriched uranium. Specifically, we measured the die-off of both fission gamma rays and neutrons, with nanosecond resolution over several hundred microseconds, relative to the emission time of neutrons from a source in close proximity to the subcritical objects. As simulations are expected to play a key role in interpreting future NDSEs, we compared our data to detailed MCNP® calculations. There was good agreement between the data and MCNP over die-off times expected to be most important to future NDSEs, but there were significant differences at both earlier and later times. We attempted to reconcile these differences by several changes to the simulations. In particular, we found that reducing the 235U(n,n’) cross section to 80% of the current ENDF7.1 evaluation resulted in much better agreement.