ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
J. A. Gomez, P. E. Koehler, T. E. Cutler, A. DeYoung, J. T. Goorley, J. D. Hutchinson, G. McKenzie, G. L. Morgan, S. M. Mosby, W. L. Myers, R. S. Rundberg, V. W. Yuan
Nuclear Science and Engineering | Volume 193 | Number 5 | May 2019 | Pages 537-548
Technical Paper | doi.org/10.1080/00295639.2018.1545956
Articles are hosted by Taylor and Francis Online.
Neutron diagnosed subcritical experiments (NDSEs) aim to measure the fission chain decay of subcritical test objects initiated by neutrons from an external source. The ultimate goal of future NDSEs is to make such measurements on dynamic subcritical objects as they are imploded. As a step toward that goal, we made measurements on three static subcritical assemblies containing highly enriched uranium. Specifically, we measured the die-off of both fission gamma rays and neutrons, with nanosecond resolution over several hundred microseconds, relative to the emission time of neutrons from a source in close proximity to the subcritical objects. As simulations are expected to play a key role in interpreting future NDSEs, we compared our data to detailed MCNP® calculations. There was good agreement between the data and MCNP over die-off times expected to be most important to future NDSEs, but there were significant differences at both earlier and later times. We attempted to reconcile these differences by several changes to the simulations. In particular, we found that reducing the 235U(n,n’) cross section to 80% of the current ENDF7.1 evaluation resulted in much better agreement.