ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Delgersaikhan Tuya, Toru Obara
Nuclear Science and Engineering | Volume 193 | Number 5 | May 2019 | Pages 481-494
Technical Paper | doi.org/10.1080/00295639.2018.1540209
Articles are hosted by Taylor and Francis Online.
A multiregion integral kinetic (MIK) code based on the integral kinetic model and a Monte Carlo neutron transport method has been developed with a new time-dependent feedback modeling capability. The current MIK code is applicable to the supercritical power transient following reactivity insertion in a fissile system of arbitrary geometry and composition, taking its feedback mechanisms into account. The new time-dependent feedback modeling capability allows a more direct and accurate treatment of complicated and nonlinear feedback mechanisms in a given system. The purpose of this study is to verify the MIK code and its time-dependent feedback modeling capability through various supercritical transient experiments conducted at the Godiva, TRACY, and SILENE facilities. Specifically, four supercritical experiments were selected and simulated using the MIK code. The various complicated feedback mechanisms—thermal expansion in Godiva, and Doppler broadening, thermal expansion, and radiolytic gas creation in TRACY and SILENE—provide a good benchmark for verifying the MIK code and its time-dependent feedback model. The obtained results show generally good, albeit occasionally poor, agreement with experimental results depending on the specific experiment. When the reasons for the poor agreement are considered, however, it may be concluded that the simulated results show promising agreement with the experiments, verifying the MIK code and its time-dependent feedback modeling capability.