ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Hans R. Hammer, Jim E. Morel, Yaqi Wang
Nuclear Science and Engineering | Volume 193 | Number 5 | May 2019 | Pages 453-480
Technical Paper | doi.org/10.1080/00295639.2018.1542865
Articles are hosted by Taylor and Francis Online.
In this paper we show the extension of nonlinear diffusion acceleration (NDA) to geometries containing small voids using a weighted-least-squares (WLS) high-order equation. Even though the WLS equation is well defined in voids, the low-order drift-diffusion equation was not defined in materials with a zero cross section. This paper derives the necessary modifications to the NDA algorithm. We show that a small change to the NDA closure term and a nonlocal definition of the diffusion coefficient solve the problems for void regions. These changes do not affect the algorithm for optically thick material regions while making the algorithm well defined in optically thin ones. We use a Fourier analysis to perform an iterative analysis to confirm that the modifications result in a stable and efficient algorithm. Later in the paper, numerical results of our method are presented. We test this formulation with a small, one-dimensional test problem. Additionally, we present results for a modified version of the C5G7 benchmark containing voids as a more complex, reactor-like problem. We compared our results to Texas A&M’s transport code PDT, utilizing a first-order discontinuous formulation as reference and the self-adjoint angular flux equation with void treatment (SAAF), a different second-order form. The results indicate that the NDA WLS performed comparably or slightly worse then the asymmetric SAAF while maintaining a symmetric discretization matrix.