ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. Scott Greenwood, Ben Betzler
Nuclear Science and Engineering | Volume 193 | Number 4 | April 2019 | Pages 417-430
Technical Paper | doi.org/10.1080/00295639.2018.1531619
Articles are hosted by Taylor and Francis Online.
Fluid-fueled nuclear reactors, such as molten salt reactors (MSRs), have recently gained significant interest. These advanced reactors represent a potential revolutionary shift in the implementation of nuclear power, and as a broad class of reactors, they have the potential to directly address many U.S. energy policy objectives. Fuel that is dissolved in the coolant requires methods to account for the birth, decay, and transport of fission products not only in the core but also throughout the loop and any auxiliary systems, such as off-gas, to which liquid fuel flows, gaseous products are carried, or solid particulates plate out. System models are particularly well suited to explore the wide range of phenomena that are associated with fluid-fueled systems, especially for safeguards analysis. However, before system dynamics can be explored, the compositions of fission products of the salt throughout the loop must be determined as they drive the dynamic behavior of a reactor.
This paper describes the derivation of a modified point-kinetics model for obtaining a first-order approximation of the behavior of a salt-fueled system in which neutron precursors and fission products are born in the fuel-salt and transported outside the core. This paper also provides verification of the model using a steady-state analytic solution and provides additional cases exploring the response under transient cases. This model establishes a baseline model that can be used to explore the dynamic response of fluid-fueled reactors and to investigate important safeguards issues such as mass accountability of source terms. The model is implemented in the Oak Ridge National Laboratory–developed, Modelica-based TRANSFORM library that was developed to investigate various aspects of advanced energy systems.