ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Scott Greenwood, Ben Betzler
Nuclear Science and Engineering | Volume 193 | Number 4 | April 2019 | Pages 417-430
Technical Paper | doi.org/10.1080/00295639.2018.1531619
Articles are hosted by Taylor and Francis Online.
Fluid-fueled nuclear reactors, such as molten salt reactors (MSRs), have recently gained significant interest. These advanced reactors represent a potential revolutionary shift in the implementation of nuclear power, and as a broad class of reactors, they have the potential to directly address many U.S. energy policy objectives. Fuel that is dissolved in the coolant requires methods to account for the birth, decay, and transport of fission products not only in the core but also throughout the loop and any auxiliary systems, such as off-gas, to which liquid fuel flows, gaseous products are carried, or solid particulates plate out. System models are particularly well suited to explore the wide range of phenomena that are associated with fluid-fueled systems, especially for safeguards analysis. However, before system dynamics can be explored, the compositions of fission products of the salt throughout the loop must be determined as they drive the dynamic behavior of a reactor.
This paper describes the derivation of a modified point-kinetics model for obtaining a first-order approximation of the behavior of a salt-fueled system in which neutron precursors and fission products are born in the fuel-salt and transported outside the core. This paper also provides verification of the model using a steady-state analytic solution and provides additional cases exploring the response under transient cases. This model establishes a baseline model that can be used to explore the dynamic response of fluid-fueled reactors and to investigate important safeguards issues such as mass accountability of source terms. The model is implemented in the Oak Ridge National Laboratory–developed, Modelica-based TRANSFORM library that was developed to investigate various aspects of advanced energy systems.