ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Masao Yamanaka, Cheol Ho Pyeon
Nuclear Science and Engineering | Volume 193 | Number 4 | April 2019 | Pages 404-416
Technical Paper | doi.org/10.1080/00295639.2018.1525978
Articles are hosted by Taylor and Francis Online.
To elucidate the accuracy of benchmarks of criticality at the Kyoto University Critical Assembly (KUCA), uncertainty analysis is conducted for manufacturing tolerances in highly enriched uranium (HEU) plates and modeling of core configurations in addition to nuclear data. For evaluation of eigenvalue bias, eigenvalue calculations are conducted using MCNP6.1 and SCALE6.2/KENO-VI together with ENDF/B-VII.1. The modeling of reference core configurations and material properties with average values is validated through a comparison between calculated and measured results. The uncertainty induced by nuclear data is evaluated with SCALE6.2/TSUNAMI-3D together with ENDF/B-VII.1 for sensitivity calculations and 56groupcov.7.1 for the covariance matrix. In the breakdown of the uncertainty induced by nuclear data, the impact of 235U shows significant dominance, about 900 pcm in hard and soft spectrum cores. Furthermore, uncertainty evaluation by manufacturing tolerances in HEU plates and reproducibility of control rod positions demonstrates that the impact of variation on measured reactivity is minor. Through experimental analyses, the index of accuracy in benchmark experiments of criticality is conducive to the reliability of benchmarks at KUCA.