ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Hans R. Hammer, Jim E. Morel, Yaqi Wang
Nuclear Science and Engineering | Volume 193 | Number 4 | April 2019 | Pages 388-403
Technical Paper | doi.org/10.1080/00295639.2018.1525977
Articles are hosted by Taylor and Francis Online.
Second-order forms of the transport equation allow the use of continuous finite elements (CFEMs). This can be desired in multiphysics calculations where other physics require CFEM discretizations. Second-order transport operators are generally self-adjoint, yielding symmetric positive-definite (SPD) matrices, which allow the use of efficient linear algebra solvers with an enormous advantage in memory usage.
Least-squares (LS) forms of the transport equation can circumvent the void problems of other second-order forms but are almost always nonconservative. Additionally, the standard LS form is not compatible with discrete ordinates method (SN) iterative solution techniques such as source iteration. A new form of the LS transport equation has recently been developed that is compatible with voids and standard SN iterative solution techniques. Performing nonlinear diffusion acceleration (NDA) using an independently differenced low-order equation enforces conservation for the whole system and makes this equation suitable for reactor physics calculations. In this context, “independent” means that both the transport and low-order solutions converge to the same scalar flux and current as the spatial mesh is refined, but for a given mesh, the solutions are not necessarily equal.
In this paper we show that introducing a weight function into this LS equation improves issues with causality and can render our equation equal to the self-adjoint angular flux (SAAF) equation. Causality is a principle of the transport equation that states that information travels only downstream along characteristics. This principle can be violated numerically. We show how to limit the weight function in voids and demonstrate the effect of this limit on accuracy. Using the C5G7 benchmark, we compare our method to the SAAF formulation with a void treatment (SAAFτ) that is not self-adjoint and has a nonsymmetric coefficient matrix. We show that the weighted LS equation with NDA gives acceptable accuracy relative to the SAAFτ equation while maintaining a SPD system matrix.