ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Hao Zhang, Yanhua Yang
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 283-298
Technical Paper | doi.org/10.1080/00295639.2018.1512788
Articles are hosted by Taylor and Francis Online.
In this paper, the development of a solver for the Multi-Fluid and Multi-Pressure model (MFMP) is presented. MFMP is the extension of the two-fluid model. In this model, the number of fluids can be greater than or equal to two. The fluids are considered to be in mechanical nonequilibrium. The pressure across the interface is not considered to be equal. A pressure-based and semi-implicit numerical method is proposed. This is different from the method used for the two-fluid model or single-pressure model. The solver is verified by classical two-fluid benchmark problems and multifluid problems. The Multi-Fluid and Single-Pressure model (MFSP) and MFMP are used. Bestion’s model is used in MFMP to consider the nonequilibrium effect of pressure. The computation shows that MFSP is unstable if the number of meshes is large enough, while MFMP is stable for the two-fluid problems and most cases of the multifluid problems. The results of MFMP are in agreement with the reference solution or analytical solution for the two-fluid problems and reasonable for most cases of the multifluid problems.