ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Akio Yamamoto, Akinori Giho, Tomohiro Endo
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 253-268
Technical Paper | doi.org/10.1080/00295639.2018.1516961
Articles are hosted by Taylor and Francis Online.
To reduce angular and spatial discretization error of the method of characteristics with a coarse calculation condition, the regionwise even-parity discontinuity factor (EPDF) for transport calculations is evaluated through an iterative procedure using only the regionwise scalar flux, i.e., without the odd-parity angular flux, the partial current, or the net current at the region boundary. The regionwise EPDF is evaluated in a single-assembly geometry with the reflective boundary condition. The evaluated EPDF is applied to a 2 × 2 colorset assembly and core configurations, and the performance is compared to that of the conventional superhomogenization (SPH) method. The calculation results indicate that (1) no convergence issue is observed during the iteration process to estimate the EPDF, (2) the performance of the regionwise EPDF is better than that of the conventional SPH method, and (3) the normalization of the EPDF is necessary to incorporate different surface scalar flux levels among different types of fuel assemblies.