ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Akio Yamamoto, Akinori Giho, Tomohiro Endo
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 253-268
Technical Paper | doi.org/10.1080/00295639.2018.1516961
Articles are hosted by Taylor and Francis Online.
To reduce angular and spatial discretization error of the method of characteristics with a coarse calculation condition, the regionwise even-parity discontinuity factor (EPDF) for transport calculations is evaluated through an iterative procedure using only the regionwise scalar flux, i.e., without the odd-parity angular flux, the partial current, or the net current at the region boundary. The regionwise EPDF is evaluated in a single-assembly geometry with the reflective boundary condition. The evaluated EPDF is applied to a 2 × 2 colorset assembly and core configurations, and the performance is compared to that of the conventional superhomogenization (SPH) method. The calculation results indicate that (1) no convergence issue is observed during the iteration process to estimate the EPDF, (2) the performance of the regionwise EPDF is better than that of the conventional SPH method, and (3) the normalization of the EPDF is necessary to incorporate different surface scalar flux levels among different types of fuel assemblies.