ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Aiguo Liu, Bao-Wen Yang, Yudong Zha
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 185-197
Technical Paper – Selected papers from NURETH 2017 | doi.org/10.1080/00295639.2018.1525189
Articles are hosted by Taylor and Francis Online.
Nuclear fuel performance is generally derived from large-scale rod bundle tests, which mainly include rod bundle critical heat flux (CHF) tests and rod bundle mixing tests under conditions of high pressure, high mass flux, and high power. Though few differences exist in the test section configuration and operation conditions, CHF tests and mixing tests generally share the same test loop, the same pressure-bearing housing, and similar flow channel designs. In rod bundle tests, the test section consists of an inner flow path with an outer surrounding chamber (outer chamber) filled with stagnant coolant. Depending on the operating conditions, the massive coolant in the outer chamber may become a significant source of heat loss/heat gain resulting from natural circulation in the outer chamber. The complex structure of the test section and variable conditions appear to be obstacles to heat loss/gain estimation.
In the past, most of the calculations and discussions for heat loss/gain correction were based on a steady-state assumption without exploring the impacts of true heat loss/gain resulting from potential transient operation. That is, in rod bundle tests, in order to determine the heat loss characteristics, only single-phase heat loss tests were conducted under different temperature steady-state conditions. With the limited parameter measured, the transient behaviors of the outer chamber are not reflected. In addition, potential heat gain conditions are neglected in single-phase heat loss tests. Based on heat loss test data, a correlation between heat loss and temperature difference of the test section inlet and exit is often derived. Given this situation, in this paper, lumped-parameter analyses are conducted to evaluate the heat loss/gain trend. A system code is applied to simulate the test section and surrounding systems under typical CHF test conditions to explore heat loss/gain transient behaviors, respectively. Methods to minimize the heat loss/gain effect through the design and operating scheme are discussed at the end.