ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Aiguo Liu, Bao-Wen Yang, Yudong Zha
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 185-197
Technical Paper – Selected papers from NURETH 2017 | doi.org/10.1080/00295639.2018.1525189
Articles are hosted by Taylor and Francis Online.
Nuclear fuel performance is generally derived from large-scale rod bundle tests, which mainly include rod bundle critical heat flux (CHF) tests and rod bundle mixing tests under conditions of high pressure, high mass flux, and high power. Though few differences exist in the test section configuration and operation conditions, CHF tests and mixing tests generally share the same test loop, the same pressure-bearing housing, and similar flow channel designs. In rod bundle tests, the test section consists of an inner flow path with an outer surrounding chamber (outer chamber) filled with stagnant coolant. Depending on the operating conditions, the massive coolant in the outer chamber may become a significant source of heat loss/heat gain resulting from natural circulation in the outer chamber. The complex structure of the test section and variable conditions appear to be obstacles to heat loss/gain estimation.
In the past, most of the calculations and discussions for heat loss/gain correction were based on a steady-state assumption without exploring the impacts of true heat loss/gain resulting from potential transient operation. That is, in rod bundle tests, in order to determine the heat loss characteristics, only single-phase heat loss tests were conducted under different temperature steady-state conditions. With the limited parameter measured, the transient behaviors of the outer chamber are not reflected. In addition, potential heat gain conditions are neglected in single-phase heat loss tests. Based on heat loss test data, a correlation between heat loss and temperature difference of the test section inlet and exit is often derived. Given this situation, in this paper, lumped-parameter analyses are conducted to evaluate the heat loss/gain trend. A system code is applied to simulate the test section and surrounding systems under typical CHF test conditions to explore heat loss/gain transient behaviors, respectively. Methods to minimize the heat loss/gain effect through the design and operating scheme are discussed at the end.