ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Bin Zhang, Mengwei Zhang, Cheng Peng, Jianqiang Shan, Baowen Yang, Yonggang Cao, Lixia Ren
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 115-130
Technical Paper - Selected papers from NURETH 2017 | doi.org/10.1080/00295639.2018.1514177
Articles are hosted by Taylor and Francis Online.
Nuclear reactor severe accidents can lead to the release of a large amount of radioactive material and cause immense disaster to the environment. Based on a heat conduction model, the DEBRIS-HT program for analyzing the heat transfer characteristics of a debris bed after a severe accident of a sodium-cooled fast reactor was developed. The basic methodology of the DEBRIS-HT program is to simplify the complex energy transfer process in the debris bed to a simple heat transfer problem by solving the equivalent thermal conductivity in different situations. In this paper, the models of the DEBRIS-HT code are explained in detail. The comparison between the simulation and experimental results shows that the DEBRIS-HT program can correctly estimate the heat transfer process in the debris bed. In addition, the DEBRIS-HT code is applied to model the core catcher of the China fast reactor. The calculated dryout heat flux of the postulated accident, in which 100% of core melts and drops on the core catcher, agrees well with the prediction result of the Lipinski’s zero-dimensional model. And the error between them is about 10%. The calculated dependence of dryout heat flux on particle size is also in good consistence with the prediction by Lipinski’s zero-dimensional model. Then, the temperature distribution and the temperature excursion of the debris bed during a likely accident are analyzed, which provides significant reference to the severe accident analysis.