ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Chen Wang, Xu Wu, Tomasz Kozlowski
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 100-114
Technical Paper – Selected papers from NURETH 2017 | doi.org/10.1080/00295639.2018.1499279
Articles are hosted by Taylor and Francis Online.
In the framework of Best Estimate Plus Uncertainty methodology, the uncertainties involved in model predictions must be quantified to prove that the investigated design is reasonable and acceptable. The uncertainties in predictions are usually calculated by propagating input uncertainties through the simulation model, which requires knowledge of the model or code input uncertainties, for example, the means, variances, distribution types, etc. However, in best-estimate system thermal-hydraulic codes such as TRACE, some parameters in empirical correlations may have large uncertainties that are unknown to code users, and their uncertainties are therefore simply ignored or described by expert opinion.
In this paper, the issue of missing uncertainty information for physical model parameters in the thermal-hydraulic code TRACE is addressed with inverse uncertainty quantification (IUQ), using the steady-state void fraction experimental data in the Organisation for Economic Co-operation and Development/Nuclear Energy Agency PSBT (Pressurized water reactor Sub-channel and Bundle Tests benchmark. The IUQ process is formulated through a Bayesian perspective, which can yield the posterior distributions of the uncertain inputs. A Gaussian process emulator is employed to significantly reduce the computational burden involved in sampling the posteriors using the Markov Chain Monte Carlo method. The posterior distributions are further used in forward uncertainty quantification and sensitivity analysis to quantify the influences of those parameters on the quantities of interest. The results demonstrate the effectiveness of the IUQ framework with a practical nuclear engineering example and show the necessity of quantifying and reducing uncertainty of physical model parameters in future work.