ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Chen Wang, Xu Wu, Tomasz Kozlowski
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 100-114
Technical Paper – Selected papers from NURETH 2017 | doi.org/10.1080/00295639.2018.1499279
Articles are hosted by Taylor and Francis Online.
In the framework of Best Estimate Plus Uncertainty methodology, the uncertainties involved in model predictions must be quantified to prove that the investigated design is reasonable and acceptable. The uncertainties in predictions are usually calculated by propagating input uncertainties through the simulation model, which requires knowledge of the model or code input uncertainties, for example, the means, variances, distribution types, etc. However, in best-estimate system thermal-hydraulic codes such as TRACE, some parameters in empirical correlations may have large uncertainties that are unknown to code users, and their uncertainties are therefore simply ignored or described by expert opinion.
In this paper, the issue of missing uncertainty information for physical model parameters in the thermal-hydraulic code TRACE is addressed with inverse uncertainty quantification (IUQ), using the steady-state void fraction experimental data in the Organisation for Economic Co-operation and Development/Nuclear Energy Agency PSBT (Pressurized water reactor Sub-channel and Bundle Tests benchmark. The IUQ process is formulated through a Bayesian perspective, which can yield the posterior distributions of the uncertain inputs. A Gaussian process emulator is employed to significantly reduce the computational burden involved in sampling the posteriors using the Markov Chain Monte Carlo method. The posterior distributions are further used in forward uncertainty quantification and sensitivity analysis to quantify the influences of those parameters on the quantities of interest. The results demonstrate the effectiveness of the IUQ framework with a practical nuclear engineering example and show the necessity of quantifying and reducing uncertainty of physical model parameters in future work.