ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
Yang Liu, Nam Dinh
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 81-99
Technical Paper – Selected papers from NURETH 2017 | doi.org/10.1080/00295639.2018.1512790
Articles are hosted by Taylor and Francis Online.
Two-fluid model-based multiphase computational fluid dynamics (MCFD) has been considered one of the most promising tools to investigate a two-phase flow and boiling system for engineering purposes. The MCFD solver requires closure relations to make the conservation equations solvable. The wall boiling closure relations, for example, provide predictions on wall superheat and heat partitioning. The accuracy of these closure relations significantly influences the predictive capability of the solver. In this paper, a study of validation and uncertainty quantification (VUQ) for the wall boiling closure relations in the MCFD solver is performed. The work has three purposes: (1) to identify influential parameters to the quantities of interest (QoIs) of the boiling system through sensitivity analysis (SA), (2) to evaluate the parameter uncertainty through Bayesian inference with the support of multiple data sets, and (3) to quantitatively measure the agreement between solver predictions and data sets. The widely used Kurul-Podowski wall boiling closure relation is studied in this paper. Several statistical methods are used, including the Morris Screening method for global SA, Markov Chain Monte Carlo for inverse Bayesian inference, and confidence interval as the validation metric. The VUQ results indicate that the current empirical correlations-based wall boiling closure relations achieved satisfactory agreement on wall superheat predictions. However, the closure relations also demonstrate intrinsic inconsistency and fail to give consistently accurate predictions for all QoIs over the well-developed nucleate boiling regime.