ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
S. Kelm, H. Müller, H.-J. Allelein
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 63-80
Technical Paper – Selected papers from NURETH 2017 | doi.org/10.1080/00295639.2018.1503858
Articles are hosted by Taylor and Francis Online.
The Organisation for Economic Co-operation and Development (OECD)/Nuclear Energy Agency International Standard Problem 47 (ISP-47) was aimed at assessing the predictive capabilities of computational fluid dynamics (CFD) and lumped-parameter codes regarding hydrogen mixing under representative thermal-hydraulic conditions of a loss-of-coolant-accident. The benchmark consisted of two systematic steps. The first step was a fundamental model assessment based on quasi-steady-state separate-effects tests in the French TOSQAN facility (7 m3, IRSN, Saclay) and MISTRA facility (100 m3, CEA, Saclay) regarding steam condensation, buoyant turbulent flows, and mixed atmospheric conditions. The second step was based on a more realistic experimental transient in the multicompartmented German Thermal-hydraulics, Hydrogen, Aerosols and Iodine (THAI) facility (60 m3, Becker Technologies, Eschborn). At that time, the blind and open analysis revealed that CFD codes needed further improvement regarding modeling of turbulence in buoyant flows, steam condensation, temperature and species concentration, and stratification buildup as well as their dissolution. This result triggered a comprehensive experimental and analytical effort, e.g., within the German national THAI, the OECD-THAI, and the OECD-SETH-1 and OECD-SETH-2 projects. Now, 10 years later, this paper aims to benchmark the state-of-the-art containment CFD model, developed at Forschungszentrum Juelich and RWTH Aachen University, and to highlight the progress made and the remaining open issues.