ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Jun Fang, Joseph J. Cambareri, Michel Rasquin, Andre Gouws, Ramesh Balakrishnan, Kenneth E. Jansen, Igor A. Bolotnov
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 46-62
Technical Paper – Selected papers from NURETH 2017 | doi.org/10.1080/00295639.2018.1499280
Articles are hosted by Taylor and Francis Online.
Absorbing heat from the fuel rod surface, water as coolant can undergo subcooled boiling within a pressurized water reactor (PWR) fuel rod bundle. Because of the buoyancy effect, the vapor bubbles generated will then rise along and interact with the subchannel geometries. Reliable prediction of bubble behavior is of immense importance to ensure safe and stable reactor operation. However, given a complex engineering system like a nuclear reactor, it is very challenging (if not impossible) to conduct high-resolution measurements to study bubbly flows under reactor operation conditions. The lack of a fundamental two-phase-flow database is hindering the development of accurate two-phase-flow models required in more advanced reactor designs. In response to this challenge, first-principles–based numerical simulations are emerging as an attractive alternative to produce a complementary data source along with experiments. Leveraged by the unprecedented computing power offered by state-of-the-art supercomputers, direct numerical simulation (DNS), coupled with interface tracking methods, is becoming a practical tool to investigate some of the most challenging engineering flow problems. In the presented research, turbulent bubbly flow is simulated via DNS in single PWR subchannel geometries with auxiliary structures (e.g., supporting spacer grid and mixing vanes). The geometric effects these structures exert on the bubbly flow are studied with both a conventional time-averaging approach and a novel dynamic bubble tracking method. The new insights obtained will help inform better two-phase models that can contribute to safer and more efficient nuclear reactor systems.