ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
Qian Zhang, Qiang Zhao, Zhijian Zhang, Liang Liang, Won Sik Yang, Hongchun Wu, Liangzhi Cao
Nuclear Science and Engineering | Volume 192 | Number 3 | December 2018 | Pages 311-327
Technical Note | doi.org/10.1080/00295639.2018.1501977
Articles are hosted by Taylor and Francis Online.
The deviations brought by the embedded self-shielding method with the pseudo-resonant isotope model is investigated. Numerical results show that error sources mainly come from the inconsistency in the heterogeneous resonance integral (RI) generated in the two-dimensional square pin–cell case with reflective boundary conditions. The high-order resonance interference effect also contributes to the deviation. The black assumption on the macroscopic cross section of the fuel is proposed to enhance the consistency in the generation of the heterogeneous RI table. Numerical results show that the modification on the original embedded self-shielding method improves the accuracy of the cross-section prediction in the multifuel lattice systems.