ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Shifa Wu, Jiashuang Wan, Hongbing Song, Xinyu Wei, Fuyu Zhao, Shripad Revankar
Nuclear Science and Engineering | Volume 192 | Number 3 | December 2018 | Pages 275-297
Technical Paper | doi.org/10.1080/00295639.2018.1501976
Articles are hosted by Taylor and Francis Online.
A novel concept of implementing the advanced mechanical shim (MSHIM) control system on the improved Chinese Pressurized Water Reactor (CPR1000) is proposed. The reactor power control system of CPR1000 is redesigned to adopt the MSHIM control system while the other parameters and control systems remain unchanged. To investigate the control performance and safety margins of this reconfiguration, the CPR1000 Full-Scope Simulation Platform (CFSSP) is first developed in MATLAB/Simulink with relevant control systems and protection system considered. The CFSSP consists of the one-dimensional nodal core model, the nonequilibrium three-region pressurizer model, the lumped-parameters dynamic model of U-tube steam generator with movable boiling boundary, and the balance of plant model. Based on the CFSSP, operational transients of step and linear turbine load changes were simulated and analyzed. The simulation results agree well with physical laws and the control performance is satisfactory. All key parameters are kept within acceptable ranges with enough safety margins and thus the protection system is not triggered. Therefore, the CPR1000 nuclear power plant implementing the MSHIM control system can safely sustain the ±10% full-power (FP) step changes and ±5% FP/min linear changes of load transients. This study can serve as a reference for the MSHIM control system application to pressurized water reactors.