ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Timothy Flaspoehler, Bojan Petrovic
Nuclear Science and Engineering | Volume 192 | Number 3 | December 2018 | Pages 254-274
Technical Paper | doi.org/10.1080/00295639.2018.1507185
Articles are hosted by Taylor and Francis Online.
In neutral-particle transport shielding problems, variance-reduction methods are used in Monte Carlo (MC) simulations to bias the progression of tracked particles toward user-defined detectors or regions of interest. These biasing techniques allow for converged results in areas that would otherwise be poorly sampled due to low neutron or gamma fluxes relative to the fixed source. One widely used state-of-the-art methodology in shielding simulations is the Consistent Adjoint-Driven Importance Sampling (CADIS) method, which is a hybrid transport methodology that uses deterministic adjoint solutions to define weight window (WW) targets for particle splitting, rouletting, and source biasing during MC. However, for large problems, the WW data can require prohibitively large amounts of memory (tens to hundreds of gigabytes). This can make the simulation not feasible with the available computational resources, or it can restrict execution to a small fraction of nodes with large enough memory, thus significantly reducing the available resources and increasing the turnaround time needed to complete intended analyses.
A novel methodology and data structure have been developed and implemented within the MONACO and MAVRIC sequences of the Scale 6.1 code package that greatly reduces memory requirements for storing WW maps by orders of magnitude. The data structure is accompanied with an algorithm that determines mesh reduction through coarsening and refinement using contributon response theory. Large memory savings are achieved by using separate block-structured grids for each energy group. The implementation of this methodology leads to a fractional increase in biased MC simulation time due to tracking particles through a more complex data structure storing the WW targets. For large shielding problems, enhanced parallelism enabled by memory reduction more than compensates for the decline in biased MC performance resulting in an effective speedup in solution time. Here, the improvements and drawbacks in the methodology are demonstrated on the relatively small but well-known Pool Critical Assembly shielding benchmark. The methodology showed a reduction in memory of from 163 to 194 times, with only a limited slowdown in biasing efficiency between 1% and 9%.