ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Timothy Flaspoehler, Bojan Petrovic
Nuclear Science and Engineering | Volume 192 | Number 3 | December 2018 | Pages 254-274
Technical Paper | doi.org/10.1080/00295639.2018.1507185
Articles are hosted by Taylor and Francis Online.
In neutral-particle transport shielding problems, variance-reduction methods are used in Monte Carlo (MC) simulations to bias the progression of tracked particles toward user-defined detectors or regions of interest. These biasing techniques allow for converged results in areas that would otherwise be poorly sampled due to low neutron or gamma fluxes relative to the fixed source. One widely used state-of-the-art methodology in shielding simulations is the Consistent Adjoint-Driven Importance Sampling (CADIS) method, which is a hybrid transport methodology that uses deterministic adjoint solutions to define weight window (WW) targets for particle splitting, rouletting, and source biasing during MC. However, for large problems, the WW data can require prohibitively large amounts of memory (tens to hundreds of gigabytes). This can make the simulation not feasible with the available computational resources, or it can restrict execution to a small fraction of nodes with large enough memory, thus significantly reducing the available resources and increasing the turnaround time needed to complete intended analyses.
A novel methodology and data structure have been developed and implemented within the MONACO and MAVRIC sequences of the Scale 6.1 code package that greatly reduces memory requirements for storing WW maps by orders of magnitude. The data structure is accompanied with an algorithm that determines mesh reduction through coarsening and refinement using contributon response theory. Large memory savings are achieved by using separate block-structured grids for each energy group. The implementation of this methodology leads to a fractional increase in biased MC simulation time due to tracking particles through a more complex data structure storing the WW targets. For large shielding problems, enhanced parallelism enabled by memory reduction more than compensates for the decline in biased MC performance resulting in an effective speedup in solution time. Here, the improvements and drawbacks in the methodology are demonstrated on the relatively small but well-known Pool Critical Assembly shielding benchmark. The methodology showed a reduction in memory of from 163 to 194 times, with only a limited slowdown in biasing efficiency between 1% and 9%.