ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Timothy Flaspoehler, Bojan Petrovic
Nuclear Science and Engineering | Volume 192 | Number 3 | December 2018 | Pages 254-274
Technical Paper | doi.org/10.1080/00295639.2018.1507185
Articles are hosted by Taylor and Francis Online.
In neutral-particle transport shielding problems, variance-reduction methods are used in Monte Carlo (MC) simulations to bias the progression of tracked particles toward user-defined detectors or regions of interest. These biasing techniques allow for converged results in areas that would otherwise be poorly sampled due to low neutron or gamma fluxes relative to the fixed source. One widely used state-of-the-art methodology in shielding simulations is the Consistent Adjoint-Driven Importance Sampling (CADIS) method, which is a hybrid transport methodology that uses deterministic adjoint solutions to define weight window (WW) targets for particle splitting, rouletting, and source biasing during MC. However, for large problems, the WW data can require prohibitively large amounts of memory (tens to hundreds of gigabytes). This can make the simulation not feasible with the available computational resources, or it can restrict execution to a small fraction of nodes with large enough memory, thus significantly reducing the available resources and increasing the turnaround time needed to complete intended analyses.
A novel methodology and data structure have been developed and implemented within the MONACO and MAVRIC sequences of the Scale 6.1 code package that greatly reduces memory requirements for storing WW maps by orders of magnitude. The data structure is accompanied with an algorithm that determines mesh reduction through coarsening and refinement using contributon response theory. Large memory savings are achieved by using separate block-structured grids for each energy group. The implementation of this methodology leads to a fractional increase in biased MC simulation time due to tracking particles through a more complex data structure storing the WW targets. For large shielding problems, enhanced parallelism enabled by memory reduction more than compensates for the decline in biased MC performance resulting in an effective speedup in solution time. Here, the improvements and drawbacks in the methodology are demonstrated on the relatively small but well-known Pool Critical Assembly shielding benchmark. The methodology showed a reduction in memory of from 163 to 194 times, with only a limited slowdown in biasing efficiency between 1% and 9%.