ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Anabella Tudora, Franz-Josef Hambsch, Viorel Tobosaru
Nuclear Science and Engineering | Volume 192 | Number 1 | October 2018 | Pages 52-69
Technical Paper | doi.org/10.1080/00295639.2018.1497394
Articles are hosted by Taylor and Francis Online.
Measurements of fission fragment data at incident energies (En) up to several tens of MeV require prompt neutron multiplicity distribution ν(A) to determine the preneutron fragment properties. Those ν(A) data are not readily experimentally available. Consequently, model predictions of ν(A) at En where multichance fission occurs are needed. The Point-by-Point model of prompt emission provides the individual ν(A) of compound nuclei of the main and secondary nucleus chains that are undergoing fission at any En. Total ν(A) calculations for n + 235U and n + 239Pu are presented together with systematic behaviors of individual ν(A) with increasing energy.