ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Anabella Tudora, Franz-Josef Hambsch, Viorel Tobosaru
Nuclear Science and Engineering | Volume 192 | Number 1 | October 2018 | Pages 52-69
Technical Paper | doi.org/10.1080/00295639.2018.1497394
Articles are hosted by Taylor and Francis Online.
Measurements of fission fragment data at incident energies (En) up to several tens of MeV require prompt neutron multiplicity distribution ν(A) to determine the preneutron fragment properties. Those ν(A) data are not readily experimentally available. Consequently, model predictions of ν(A) at En where multichance fission occurs are needed. The Point-by-Point model of prompt emission provides the individual ν(A) of compound nuclei of the main and secondary nucleus chains that are undergoing fission at any En. Total ν(A) calculations for n + 235U and n + 239Pu are presented together with systematic behaviors of individual ν(A) with increasing energy.