ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Bastien Faure, Pascal Archier, Jean-François Vidal, Laurent Buiron
Nuclear Science and Engineering | Volume 192 | Number 1 | October 2018 | Pages 40-51
Technical Paper | doi.org/10.1080/00295639.2018.1480190
Articles are hosted by Taylor and Francis Online.
Fast resolution of the Boltzmann transport equation over a nuclear reactor core presupposes the definition of homogenized and energy-collapsed cross sections. In modern sodium fast reactors that rely on heterogeneous core designs, anisotropy in the neutron propagation cannot be neglected, so three-dimensional (3D) models should be used to efficiently compute those effective cross sections. In this paper, the 2D/1D approximation is carried out to overcome computationally expensive 3D calculations while preserving consistent angular representations of the neutron flux. An iterative procedure is defined to solve the 2D/1D equations and produce coarse group homogenized cross sections that account for 3D transport effects. Accuracy of the algorithm is tested on a realistic model of the ASTRID core showing very good results against Monte Carlo simulations for all neutronic parameters (eigenvalue, sodium void worth, and fission map distribution).