ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Woosong Kim, Kyunghoon Lee, Yonghee Kim
Nuclear Science and Engineering | Volume 192 | Number 1 | October 2018 | Pages 1-20
Technical Paper | doi.org/10.1080/00295639.2018.1497396
Articles are hosted by Taylor and Francis Online.
The Albedo-corrected Parameterized Equivalence Constants (APEC) method, a new leakage correction method for two-group nodal analysis of light water reactors, has been extended to discontinuity factor (DF) correction. First, the error of nodal calculations induced by an inaccurate assembly discontinuity factor (ADF) is evaluated using the reference two-group cross section (XS) and DF calculated from heterogeneous core transport calculations. Functionalization of DF is performed by finding relationships between surfacewise current-to-flux ratio and change of DF from ADF. The least-squares method is used to fit several candidate functions to various core calculation results. The coefficients of APEC XS and DF correction functions are determined considering several color-set models. In this work, the two-dimensional method of characteristics–based lattice code DeCART2D is used for reference core calculations and lattice calculations. The extended APEC method is implemented in an in-house NEM nodal code using the partial-current coarse mesh finite difference acceleration. A small modular reactor (SMR) initial core benchmark is analyzed to evaluate the performance of the extended APEC method. In addition, the extended APEC method is applied to several variants of the SMR core and large variants to assess its general applicability.