ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Maria Hendrina Du Toit, Vishana Vivian Naicker
Nuclear Science and Engineering | Volume 191 | Number 3 | September 2018 | Pages 291-304
Computer Code Abstract | doi.org/10.1080/00295639.2018.1468153
Articles are hosted by Taylor and Francis Online.
The European pressurized reactor (EPR) is classified as a Generation III+ reactor. It differs from a conventional pressurized water reactor in many aspects, one of which is the core design. This evolutionary reactor lends itself to new fuel designs, such as thorium-based fuels. To perform new design calculations, a base case model needs to be established because the detailed models that are currently available are either proprietary or regulated. This paper therefore presents such a model based on the Monte Carlo method. This method is a valuable component of reactor neutronic calculations because geometry and materials can be accurately modeled.
We modeled a full core of the EPR using MCNP6, in which the individual fuel pin geometry and material definitions were used together with radial and axial temperature characterization based on fuel assemblies considered as nodes. Data for both the neutronic and thermal-hydraulic models were mainly obtained from the U.S. EPR Final Safety Analysis Report (FSAR) [Rev. 5, AREVA (2013)].
The neutronic and some thermal-hydraulic results were compared with data from the EPR FSAR. The following core neutronic parameters compared well with the FSAR data: the boron worth, axial flux distribution, neutron flux spectrum, reactivity coefficients, and control rod worth. However, the delayed neutron fraction showed a somewhat larger difference compared to the FSAR. Given this verification with the FSAR, confidence in the MCNP6 EPR model was therefore established. The model that we have developed serves as the basis for the follow-on study of introducing thorium in the EPR core.