ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Lei Jin, Kaushik Banerjee
Nuclear Science and Engineering | Volume 191 | Number 3 | September 2018 | Pages 248-261
Technical Paper | doi.org/10.1080/00295639.2018.1471269
Articles are hosted by Taylor and Francis Online.
Monte Carlo (MC) simulation is widely used to solve the eigenvalue form of the Boltzmann transport equation that mathematically represents the neutron transport process through complex multiplying (fissionable) systems. Monte Carlo eigenvalue simulation starts with an assumed fission source distribution and uses the fission sites from the previous iteration (cycle) as the starting source in the current iteration. Important system parameters (MC tallies) such as fuel pin-power distribution are estimated over several cycles after the convergence of the fission source distribution to a stationary distribution. However, the MC fission source iteration algorithm that uses fission source sites from the previous cycle introduces a cycle-to-cycle correlation. Monte Carlo simulations that do not account for the cycle-to-cycle correlation systematically underestimate the variance of the estimated system parameters (sample mean). This paper presents the relationship between the spectral density in the frequency domain at frequency zero and the variance of the sample mean. This paper introduces a novel method in the frequency domain for the MC variance estimation. For the three test problems used in this paper, researchers have observed that the new method results in an improvement of more than one order of magnitude to the standard deviation of the sample mean. The new method also compares favorably with the previously introduced batch, bootstrap, and covariance-adjusted methods when applied to the three test problems investigated in this paper. This new method does not require modification of the MC eigenvalue algorithm (power iteration), is code agnostic, and is therefore easy to use when implementing in any existing MC code. The new estimate can be calculated without saving tally results of all active/stationary cycles.