ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jeffery D. Densmore
Nuclear Science and Engineering | Volume 191 | Number 3 | September 2018 | Pages 231-247
Technical Paper | doi.org/10.1080/00295639.2018.1466542
Articles are hosted by Taylor and Francis Online.
We develop an analytic solution for time-dependent neutron transport with delayed neutrons using the singular eigenfunction expansion method. Our approach is based on a technique for solving time-dependent neutron-transport problems without delayed neutrons (Case and Zweifel, Linear Transport Theory, Addison-Wesley, 1967), which we effectively generalize to include the presence of delayed-neutron precursors. In particular, we obtain eigenfunctions composed of two parts: one corresponding to the neutron angular flux and one corresponding to the delayed-neutron precursor concentration. We further demonstrate that these eigenfunctions are complete. We also provide numerical results for an example problem.