ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Dan G. Cacuci, Ruixian Fang, Madalina C. Badea
Nuclear Science and Engineering | Volume 191 | Number 2 | August 2018 | Pages 187-202
Computer Code Abstract | doi.org/10.1080/00295639.2018.1451675
Articles are hosted by Taylor and Francis Online.
The software module MULTI-PRED implements the methodology for predictive modeling of coupled multi-physics systems (PM-CMPS) formulated by Cacuci [Ann. Nucl. Energy, Vol. 70, p, 266 (2014)]. This methodology fully takes into account the coupling terms between the systems but requires only the computational resources that would be needed to perform predictive modeling on each system separately. The PM-CMPS methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution based on a priori known mean values and uncertainties characterizing the experimental and computational parameters and results of interest responses called for the multi-physics models under consideration. This maximum entropy a priori distribution is combined, using Bayes’ theorem, with the likelihood provided by the multi-physics simulation models to obtain a formal posterior distribution. Subsequently, the posterior distribution thus obtained is evaluated using the saddle-point method to obtain analytical expressions for the optimally predicted values for the multi-physics model parameters and responses along with corresponding reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed such that the systems can be considered sequentially rather than simultaneously, while preserving exactly the same results as if the systems were treated simultaneously. Consequently, very large coupled systems, which could perhaps exceed available computational resources if treated simultaneously, can be treated with the PM-CMPS methodology presented in this work sequentially and without any loss of generality or information, requiring just the resources that would be needed if the systems were treated sequentially.
The PM-CMPS methodology can be applied to reduce uncertainties in both forward and inverse problems. Three demonstration problems are provided to illustrate the application of the PM-CMPS methodology. The first problem presents the application of the PM-CMPS methodology to a simple particle diffusion problem which admits a closed-form analytical solution which facilitates a rapid understanding of this methodology and its predicted results. The second demonstration problem presents the application of the PM-CMPS methodology to the problem of inverse prediction, from detector responses in the presence of counting uncertainties, of the thickness of a homogeneous slab of material containing uniformly distributed gamma-emitting sources for optically thin and thick slabs. This problem highlights the essential role played by the relative uncertainties (or, conversely, accuracies) of measured and computed responses. The third demonstration problem presents the application of the PM-CMPS methodology to the F-Area cooling towers at the Savannah River National Lab. This problem demonstrates that the PM-CMPS methodology reduces the predicted response uncertainties not only at locations where measurements are available, but also at locations where measurements are not available.
MULTI-PRED is written in Fortran and runs on Linux and Windows systems. A C++ version will also become available.