ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Kazuki Kuwagaki, Jun Nishiyama, Toru Obara
Nuclear Science and Engineering | Volume 191 | Number 2 | August 2018 | Pages 178-186
Technical Note | doi.org/10.1080/00295639.2018.1463744
Articles are hosted by Taylor and Francis Online.
In the breed and burn (B&B) strategy, low-reactivity fuels are loaded in a core. It is difficult to keep criticality in operating a small core. To enhance the potential for achieving criticality, the neutron economy in a core should be improved. One improvement method is to increase the core size and reduce neutron leakage. If it is necessary to avoid the large-sized core, another method is to locate high-reactivity fuels in high-neutron-importance region continuously through an equilibrium burnup state. On the other hand, to stabilize the change of neutron flux and power distribution during the operation, the B&B regions need to be kept stationary in the same region.
In this study, a rotational fuel-shuffling concept was proposed. In this concept, fuel assemblies are moved to the next position step by step in a divided symmetry core region. Fresh fuel is loaded from the periphery and moved toward the center region, then moved outward and discharged. If the core could achieve an equilibrium state at which high-reactivity fuels are continuously placed in the core center region, it would be possible to keep the B&B regions stationary. In this kind of equilibrium state, high-reactivity fuels are placed in high-neutron-importance region stably. Simulations for this concept were performed using the continuous-energy Monte Carlo code MVP/MVP-BURN. A small lead-bismuth-cooled fast reactor with metallic fuel was adopted as the core design. As a result, a core with rotational fuel shuffling achieved an equilibrium cycle at criticality, and the change of multiplication factors in the equilibrium cycle was less than 0.1%. The neutron flux and power distributions were almost unchanged during the operation. In addition, high-reactivity fuels were constantly placed in the high-neutron-flux region. It was found that this concept can achieve criticality and a stable power profile.