ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Indrajeet Singh, Anurag Gupta, Umasankari Kannan
Nuclear Science and Engineering | Volume 191 | Number 2 | August 2018 | Pages 161-177
Technical Note | doi.org/10.1080/00295639.2018.1463745
Articles are hosted by Taylor and Francis Online.
A combination of the neutronics features of gas-cooled high-temperature reactors by using the fuel in the form of ceramic-coated particles, called tristructural-isotropic, and the heat removal feature of molten salt reactors by using molten salt as a coolant is an attractive option in designing a reactor with a high-power density operation without compromising the safety aspects. Neutronics feasibility of such a combination of the molten salt (LiF-BeF2) as a coolant and thorium-based fuel, in particular (Th-233U)O2, in a graphite-moderated system is investigated. This technical note presents the influence of the heavy metal (HM) loading on neutronics features of a pebble lattice cell, that is, infinite multiplication factor (K-inf), temperature coefficients of reactivity (TCR), the void reactivity coefficient, etc. In addition, enriched uranium fuel has also been studied just to make a comparison with thorium-based fuel. Furthermore, the minimum HM loading of fuel per pebble that is needed to achieve negative coolant-temperature reactivity coefficients and void reactivity coefficients has been estimated for molten salt coolant.
The analyses show that Th2/U3 fuel gives a less negative fuel temperature reactivity coefficient as compared with that of uranium-based fuel. This study also shows that all the TCR of both fuel types improve, becoming less positive or more negative, by increasing HM loading per pebble. Further, the burnup dependence of K-inf and the reactivity coefficients are studied for limiting HM loadings, e.g., 30 g per pebble. The change in the spectrum and the four-factor formula are used to explain the behavior of the reactivity coefficients as a function of HM loading and burnup.