ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Hyeon Tae Kim, Yonghee Kim
Nuclear Science and Engineering | Volume 191 | Number 2 | August 2018 | Pages 136-149
Technical Paper | doi.org/10.1080/00295639.2018.1463747
Articles are hosted by Taylor and Francis Online.
Application of partial current–based coarse-mesh finite difference (pCMFD) acceleration to a one-node scheme is devised for stability enhancement of the parallel neutron transport calculation algorithm. Conventional one-node coarse-mesh finite difference (CMFD) allows parallel algorithms to be more tractable than two-node CMFD, but it has an inherent stability issue for some problems. In order to overcome this issue, pCMFD is modified to be fitted into the one-node scheme and is tested for both sequential and parallel calculations. The superior stability of the one-node pCMFD is shown by comparing results from analytic and numerical approaches. To investigate the convergence behavior of the acceleration methods in an analytic way, Fourier analysis is applied to an infinite homogeneous slab reactor configuration with the monoenergetic neutron flux assumption, and the spectral radius is calculated as a convergence factor. This paper carefully describes the process of the Fourier analysis on the parallel algorithm for neutron transport and compares it to that of the conventional sequential algorithm.