ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Xuelong Fu, Zhengbo Ji, Chunbo Li
Nuclear Science and Engineering | Volume 191 | Number 1 | July 2018 | Pages 85-97
Technical Paper | doi.org/10.1080/00295639.2018.1449492
Articles are hosted by Taylor and Francis Online.
A novel neutron shielding B4C/CF/PI/AA6061 composite laminate (NSCL) with different layups containing 10 to 50 wt% of boron carbide (B4C) particles was successfully fabricated using a hot molding process. The effects of different B4C loadings and various configurations on the neutron transmission of the NSCLs were evaluated correspondingly. The MCNP 5.0 program was used to probe the neutron transmission mechanism of the NSCLs. The results showed that B4C particles are an effective absorbent, and neutron transmission of the NSCLs decreased with the increment of layups, B4C loadings, and the laminate thickness. Fast neutrons emitted from a 241Am-Be neutron source were first moderated by low atomic elements (hydrogen) and then absorbed by 10B nuclide contained in the B4C particles. Numerical simulation corroborated the experimental testing results.