ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Xuelong Fu, Zhengbo Ji, Chunbo Li
Nuclear Science and Engineering | Volume 191 | Number 1 | July 2018 | Pages 85-97
Technical Paper | doi.org/10.1080/00295639.2018.1449492
Articles are hosted by Taylor and Francis Online.
A novel neutron shielding B4C/CF/PI/AA6061 composite laminate (NSCL) with different layups containing 10 to 50 wt% of boron carbide (B4C) particles was successfully fabricated using a hot molding process. The effects of different B4C loadings and various configurations on the neutron transmission of the NSCLs were evaluated correspondingly. The MCNP 5.0 program was used to probe the neutron transmission mechanism of the NSCLs. The results showed that B4C particles are an effective absorbent, and neutron transmission of the NSCLs decreased with the increment of layups, B4C loadings, and the laminate thickness. Fast neutrons emitted from a 241Am-Be neutron source were first moderated by low atomic elements (hydrogen) and then absorbed by 10B nuclide contained in the B4C particles. Numerical simulation corroborated the experimental testing results.