ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Lubomír Bureš, Stefano Caruso
Nuclear Science and Engineering | Volume 191 | Number 1 | July 2018 | Pages 66-84
Technical Paper | doi.org/10.1080/00295639.2018.1442059
Articles are hosted by Taylor and Francis Online.
Knowledge of the radionuclide inventory in spent nuclear fuel is important for back-end operations such as fuel transport and storage, but it is also relevant for the postclosure safety case for a deep geological repository. Extensive depletion calculations using neutron transport solvers can be time consuming and resource intensive in the case of characterization of a large number of fuel assemblies. Issues of computational demand are further amplified when the inventory of only a single pin from the assembly is desired.
A new approach to speeding up the computational time without significant loss of accuracy is proposed in this work, consisting of simplification of the modeled geometry by means of stochastic optimization. The development of this novel methodology, the Acropolis methodology, is described in detail in this paper. Additionally, extensive benchmark and validation exercises were carried out to present and discuss the advantages and limitations of the proposed method.