ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Qian Zhang, Qiang Zhao, Won Sik Yang, Hongchun Wu
Nuclear Science and Engineering | Volume 191 | Number 1 | July 2018 | Pages 46-65
Technical Paper | doi.org/10.1080/00295639.2018.1429174
Articles are hosted by Taylor and Francis Online.
In order to develop an efficient resonance self-shielding method that can model the complex resonance-interference effects in depleted fuel compositions, an improved Pseudo Resonant Isotope Model (PRIM) has been developed by incorporating a number density–perturbation technique in the resonance cross-section tables for pseudo isotopes. Numerical results for homogeneous mixtures, pin cells, and pressurized water reactor lattice problems show that the new model is able to produce accurate group cross sections for a wide range of depletion states of different types of fuels, comparable to those obtained from online ultra-fine-group slowing-down calculations. Computational cost analysis shows that the improved PRIM is a promising method applicable to the resonance self-shielding calculations for large-scale reactor core analysis with depletion.