ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Crash Course: The DOE’s Package Performance Demonstration
Inspired by a history of similar testing endeavors and recommended by the National Academy of Sciences and the Blue Ribbon Commission on America’s Nuclear Future, the Department of Energy is planning to conduct physical demonstrations on rail-sized spent nuclear fuel transportation casks. As part of the project, called the Spent Nuclear Fuel Package Performance Demonstration (PPD), the DOE is considering a number of demonstrations based on regulatory tests and realistic transportation scenarios, including collisions, drops, exposure to fire, and immersion in water.
Matthew A. Gonzales, Brian C. Kiedrowski, Anil K. Prinja, Forrest B. Brown
Nuclear Science and Engineering | Volume 191 | Number 1 | July 2018 | Pages 1-45
Technical Paper | doi.org/10.1080/00295639.2018.1442546
Articles are hosted by Taylor and Francis Online.
The heavy-gas model with specific energy-dependent absorption cross sections is used to construct analytical, semi-analytical, and numerical free-gas scattering benchmarks for the neutron spectrum, effective multiplication factor k, and temperature coefficient in an infinite, homogeneous medium. The energy dependences considered are piecewise constant, constant plus inverse in energy, and piecewise linear. Analytic forms for k and in terms of hypergeometric functions are obtained for piecewise-constant absorption with two energy ranges and for constant-plus-inverse-in-energy absorption. Analogous semi-analytical integral expressions are obtained for piecewise-linear absorption with two energy ranges. Numerical solutions of a linear system are obtained for piecewise-constant and piecewise-linear absorption for greater than two energy ranges. The heavy-gas model solutions of k are compared with continuous-energy Monte Carlo calculations; the results converge to the heavy-gas model with increasing target mass ratio A, demonstrating the heavy-gas model’s utility as a verification benchmark.