ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Han Zhang, Jiong Guo, Jianan Lu, Fu Li, Yunlin Xu, T. J. Downar
Nuclear Science and Engineering | Volume 190 | Number 3 | June 2018 | Pages 287-309
Technical Paper | doi.org/10.1080/00295639.2018.1442061
Articles are hosted by Taylor and Francis Online.
This paper evaluates the performance of neutronic and thermal-hydraulic coupling algorithms in transient problems based on the high-temperature gas-cooled reactor simulator TINTE. In particular, the operator splitting semi-implicit (OSSI), Picard iteration, and Jacobian-free Newton-Krylov (JFNK) methods are compared by a practical engineering model. The OSSI method is employed in the original TINTE. The fully implicit algorithms TINTE-Picard and TINTE-JFNK are implemented in this study. Several special numerical technologies are discussed to improve the performance of JFNK. First, a novel JFNK variant is employed to deal with the multiscale coupling between local fuel sphere temperature and global solid porous media temperature. Second, the preconditioning strategy is determined by making a balance between performance and code burden. Finally, the scaling modifications of the Jacobian matrix and perturbation size are investigated to solve the ill-posed problem. What is more, the framework of TINTE-Picard and TINTE-JFNK is presented, and the key points of implementation are discussed. Numerical results indicate that the advanced coupling algorithms Picard and JFNK can achieve higher computational performance than the original semi-implicit coupling algorithm in TINTE due to the accuracy and stability advantage.