ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Han Zhang, Jiong Guo, Jianan Lu, Fu Li, Yunlin Xu, T. J. Downar
Nuclear Science and Engineering | Volume 190 | Number 3 | June 2018 | Pages 287-309
Technical Paper | doi.org/10.1080/00295639.2018.1442061
Articles are hosted by Taylor and Francis Online.
This paper evaluates the performance of neutronic and thermal-hydraulic coupling algorithms in transient problems based on the high-temperature gas-cooled reactor simulator TINTE. In particular, the operator splitting semi-implicit (OSSI), Picard iteration, and Jacobian-free Newton-Krylov (JFNK) methods are compared by a practical engineering model. The OSSI method is employed in the original TINTE. The fully implicit algorithms TINTE-Picard and TINTE-JFNK are implemented in this study. Several special numerical technologies are discussed to improve the performance of JFNK. First, a novel JFNK variant is employed to deal with the multiscale coupling between local fuel sphere temperature and global solid porous media temperature. Second, the preconditioning strategy is determined by making a balance between performance and code burden. Finally, the scaling modifications of the Jacobian matrix and perturbation size are investigated to solve the ill-posed problem. What is more, the framework of TINTE-Picard and TINTE-JFNK is presented, and the key points of implementation are discussed. Numerical results indicate that the advanced coupling algorithms Picard and JFNK can achieve higher computational performance than the original semi-implicit coupling algorithm in TINTE due to the accuracy and stability advantage.