ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Xiafeng Zhou, Fu Li
Nuclear Science and Engineering | Volume 190 | Number 3 | June 2018 | Pages 238-257
Technical Paper | doi.org/10.1080/00295639.2018.1435136
Articles are hosted by Taylor and Francis Online.
Motivated by the high accuracy and efficiency of nodal methods on the coarse meshes and the superlinear convergence and high efficiency of Jacobian-free Newton-Krylov (JFNK) methods for large-scale nonlinear problems, a new JFNK nodal expansion method (NEM) with the physics-based preconditioner and local elimination NEM_JFNK is successfully developed to solve three-dimensional (3D) and multigroup k-eigenvalue problems by combining and integrating the NEM discrete systems into the framework of JFNK methods. A local elimination technique of NEM_JFNK is developed to eliminate some intermediate variables, expansion coefficients, and transverse leakage terms through equivalent transformation as much as possible in order to reduce the computational cost and the number of final-solving variables and residual equations constructed in NEM_JFNK. Then efficient physics-based preconditioners are successfully developed by approximating the matrices of the diffusion and removal terms, transverse leakage terms using the three-adjacent-node quadratic fitting methods, and scatter source terms, which make full use of the traditional power iteration. In addition, the Eisenstat-Walker forcing terms are used in the developed NEM_JFNK method to adaptively choose the convergence criterion of linear Krylov iteration within each Newton iteration based on the Newton residuals and to improve computational efficiency further. Finally, the NEM_JFNK code is developed for 3D and multigroup k-eigenvalue problems in neutron diffusion calculations and the detailed study of convergence, computational cost, and efficiency is carried out for several 3D problems. Numerical results show that the developed NEM_JFNK methods have faster convergence speed and are more efficient than the traditional NEM using power iteration, and the speedup ratio is greater for the higher convergence criterion.