ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Crash Course: The DOE’s Package Performance Demonstration
Inspired by a history of similar testing endeavors and recommended by the National Academy of Sciences and the Blue Ribbon Commission on America’s Nuclear Future, the Department of Energy is planning to conduct physical demonstrations on rail-sized spent nuclear fuel transportation casks. As part of the project, called the Spent Nuclear Fuel Package Performance Demonstration (PPD), the DOE is considering a number of demonstrations based on regulatory tests and realistic transportation scenarios, including collisions, drops, exposure to fire, and immersion in water.
Xiafeng Zhou, Fu Li
Nuclear Science and Engineering | Volume 190 | Number 3 | June 2018 | Pages 238-257
Technical Paper | doi.org/10.1080/00295639.2018.1435136
Articles are hosted by Taylor and Francis Online.
Motivated by the high accuracy and efficiency of nodal methods on the coarse meshes and the superlinear convergence and high efficiency of Jacobian-free Newton-Krylov (JFNK) methods for large-scale nonlinear problems, a new JFNK nodal expansion method (NEM) with the physics-based preconditioner and local elimination NEM_JFNK is successfully developed to solve three-dimensional (3D) and multigroup k-eigenvalue problems by combining and integrating the NEM discrete systems into the framework of JFNK methods. A local elimination technique of NEM_JFNK is developed to eliminate some intermediate variables, expansion coefficients, and transverse leakage terms through equivalent transformation as much as possible in order to reduce the computational cost and the number of final-solving variables and residual equations constructed in NEM_JFNK. Then efficient physics-based preconditioners are successfully developed by approximating the matrices of the diffusion and removal terms, transverse leakage terms using the three-adjacent-node quadratic fitting methods, and scatter source terms, which make full use of the traditional power iteration. In addition, the Eisenstat-Walker forcing terms are used in the developed NEM_JFNK method to adaptively choose the convergence criterion of linear Krylov iteration within each Newton iteration based on the Newton residuals and to improve computational efficiency further. Finally, the NEM_JFNK code is developed for 3D and multigroup k-eigenvalue problems in neutron diffusion calculations and the detailed study of convergence, computational cost, and efficiency is carried out for several 3D problems. Numerical results show that the developed NEM_JFNK methods have faster convergence speed and are more efficient than the traditional NEM using power iteration, and the speedup ratio is greater for the higher convergence criterion.