ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
F. Zhou, D. R. Novog, L. J. Siefken, C. M. Allison
Nuclear Science and Engineering | Volume 190 | Number 3 | June 2018 | Pages 209-237
Technical Paper | doi.org/10.1080/00295639.2018.1442060
Articles are hosted by Taylor and Francis Online.
In different stages of postulated severe accidents in CANDU reactors, the fuel channels may experience a series of thermomechanical deformations, some of which may have significant impacts on accident progression; however, they have not been mechanistically modeled by integrated severe accident codes such as MAAP-CANDU and SCDAP/RELAP5. This paper focuses on the development and benchmarking of mechanistic models for pressure tube (PT) ballooning and sagging phenomena during the fuel channel heatup phase as well as for the sagging of fuel channel assemblies during the core disassembly phase. These models, which are based on existing phenomena in literature, are coupled with RELAP5 and/or integrated into RELAP/SCDAPSIM/MOD3.6 as new SCDAP subroutines to provide more robust treatment of the deformation phases of severe accidents.
The ballooning of a PT will lead to contact with its calandria tube (CT) and occurs during conditions where the coolant pressure is moderately high. At initial contact the high contact thermal conductance and the large temperature difference between the two tubes result in a large transient heat flux that challenges the channel integrity through potential film boiling on the outer calandria surface if moderator subcooling is low. A one-dimensional ballooning and contact model (BALLON) has been developed. BALLON calculates the ballooning-driven transverse strain of PT and CT and modifies the effective conductivity of the annulus before and after contact.
Pressure tube sagging is the dominant deformation mechanism at low pressures and occurs at relatively high PT temperatures. A model based on simple beam theory (SAGPT) has been developed. SAGPT calculates the longitudinal strain and the deflection of PT, and it also determines PT-to-CT sagging contact. The sagging and disassembly of the entire fuel channel assembly occur when the fuel channels are uncovered and the moderator heat sink is lost; thus, the entire PT-CT assembly sags together, possibly contacting channels at lower elevations. A model named SAGCH is created to track fuel channel assembly sagging after moderator boil off and also determines the extent of channel-to-channel contact, channel disassembly, suspended debris bed characteristics, and eventual core collapse.
This paper presents detailed descriptions of the models, the coupling schemes, and their benchmark against experiments, together with an extensive review of relevant studies in the literature.