ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Crash Course: The DOE’s Package Performance Demonstration
Inspired by a history of similar testing endeavors and recommended by the National Academy of Sciences and the Blue Ribbon Commission on America’s Nuclear Future, the Department of Energy is planning to conduct physical demonstrations on rail-sized spent nuclear fuel transportation casks. As part of the project, called the Spent Nuclear Fuel Package Performance Demonstration (PPD), the DOE is considering a number of demonstrations based on regulatory tests and realistic transportation scenarios, including collisions, drops, exposure to fire, and immersion in water.
F. Zhou, D. R. Novog, L. J. Siefken, C. M. Allison
Nuclear Science and Engineering | Volume 190 | Number 3 | June 2018 | Pages 209-237
Technical Paper | doi.org/10.1080/00295639.2018.1442060
Articles are hosted by Taylor and Francis Online.
In different stages of postulated severe accidents in CANDU reactors, the fuel channels may experience a series of thermomechanical deformations, some of which may have significant impacts on accident progression; however, they have not been mechanistically modeled by integrated severe accident codes such as MAAP-CANDU and SCDAP/RELAP5. This paper focuses on the development and benchmarking of mechanistic models for pressure tube (PT) ballooning and sagging phenomena during the fuel channel heatup phase as well as for the sagging of fuel channel assemblies during the core disassembly phase. These models, which are based on existing phenomena in literature, are coupled with RELAP5 and/or integrated into RELAP/SCDAPSIM/MOD3.6 as new SCDAP subroutines to provide more robust treatment of the deformation phases of severe accidents.
The ballooning of a PT will lead to contact with its calandria tube (CT) and occurs during conditions where the coolant pressure is moderately high. At initial contact the high contact thermal conductance and the large temperature difference between the two tubes result in a large transient heat flux that challenges the channel integrity through potential film boiling on the outer calandria surface if moderator subcooling is low. A one-dimensional ballooning and contact model (BALLON) has been developed. BALLON calculates the ballooning-driven transverse strain of PT and CT and modifies the effective conductivity of the annulus before and after contact.
Pressure tube sagging is the dominant deformation mechanism at low pressures and occurs at relatively high PT temperatures. A model based on simple beam theory (SAGPT) has been developed. SAGPT calculates the longitudinal strain and the deflection of PT, and it also determines PT-to-CT sagging contact. The sagging and disassembly of the entire fuel channel assembly occur when the fuel channels are uncovered and the moderator heat sink is lost; thus, the entire PT-CT assembly sags together, possibly contacting channels at lower elevations. A model named SAGCH is created to track fuel channel assembly sagging after moderator boil off and also determines the extent of channel-to-channel contact, channel disassembly, suspended debris bed characteristics, and eventual core collapse.
This paper presents detailed descriptions of the models, the coupling schemes, and their benchmark against experiments, together with an extensive review of relevant studies in the literature.