ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Crash Course: The DOE’s Package Performance Demonstration
Inspired by a history of similar testing endeavors and recommended by the National Academy of Sciences and the Blue Ribbon Commission on America’s Nuclear Future, the Department of Energy is planning to conduct physical demonstrations on rail-sized spent nuclear fuel transportation casks. As part of the project, called the Spent Nuclear Fuel Package Performance Demonstration (PPD), the DOE is considering a number of demonstrations based on regulatory tests and realistic transportation scenarios, including collisions, drops, exposure to fire, and immersion in water.
Shashi Kant Verma, S. L. Sinha, D. K. Chandraker
Nuclear Science and Engineering | Volume 190 | Number 2 | May 2018 | Pages 195-208
Technical Paper | doi.org/10.1080/00295639.2017.1413874
Articles are hosted by Taylor and Francis Online.
The objective of the present work is to establish the effect of spacer and geometrical parameters of nuclear fuel rods on the turbulent mixing rate in subchannels of the advanced heavy water reactor (AHWR) rod bundle. Experiments on the AHWR rod bundle have been carried out in a scaled test facility developed at Bhabha Atomic Research Centre, Trombay, Maharashtra. In order to confirm the validity of the proposed method, experimental data on the turbulent mixing rate were obtained using a tracer technique under adiabatic conditions with 3.5-m vertical test channels, consisting of three subchannels. The spacer was installed at 2963 mm (37 mm at the end of the mixing section), 2926 mm (74 mm at the end of the mixing section), and 2889 mm (111 mm at the end of the mixing section) from the entry section in the test section, respectively, for three different positions. The experimental results (blockage ratio 4%) have been compared with the case without spacer and finally new correlations have been developed between average mixing number, combined Reynolds number, and gap-to-centroidal ratio (S/δ). The range of average Reynolds number covered was 0 to 6424. The correlation is applicable for a vertical pressure tube–type boiling water reactor (AHWR) with a reasonable accuracy. The instrument was calibrated prior to each set of analyses with standard solution. It predicts a reasonable mixing at a higher S/δ as compared to without spacer, which is the most improved feature of the correlation when compared with the existing ones. The uncertainty analysis has been carried out for the measurement of flow rate, concentration, and height of the test section. The proposed correlation may be applicable for the thermal-hydraulic design of an AHWR with an improved accuracy. A complete set of mixing data was obtained which can be used to calibrate thermal-hydraulic codes.