ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Shashi Kant Verma, S. L. Sinha, D. K. Chandraker
Nuclear Science and Engineering | Volume 190 | Number 2 | May 2018 | Pages 195-208
Technical Paper | doi.org/10.1080/00295639.2017.1413874
Articles are hosted by Taylor and Francis Online.
The objective of the present work is to establish the effect of spacer and geometrical parameters of nuclear fuel rods on the turbulent mixing rate in subchannels of the advanced heavy water reactor (AHWR) rod bundle. Experiments on the AHWR rod bundle have been carried out in a scaled test facility developed at Bhabha Atomic Research Centre, Trombay, Maharashtra. In order to confirm the validity of the proposed method, experimental data on the turbulent mixing rate were obtained using a tracer technique under adiabatic conditions with 3.5-m vertical test channels, consisting of three subchannels. The spacer was installed at 2963 mm (37 mm at the end of the mixing section), 2926 mm (74 mm at the end of the mixing section), and 2889 mm (111 mm at the end of the mixing section) from the entry section in the test section, respectively, for three different positions. The experimental results (blockage ratio 4%) have been compared with the case without spacer and finally new correlations have been developed between average mixing number, combined Reynolds number, and gap-to-centroidal ratio (S/δ). The range of average Reynolds number covered was 0 to 6424. The correlation is applicable for a vertical pressure tube–type boiling water reactor (AHWR) with a reasonable accuracy. The instrument was calibrated prior to each set of analyses with standard solution. It predicts a reasonable mixing at a higher S/δ as compared to without spacer, which is the most improved feature of the correlation when compared with the existing ones. The uncertainty analysis has been carried out for the measurement of flow rate, concentration, and height of the test section. The proposed correlation may be applicable for the thermal-hydraulic design of an AHWR with an improved accuracy. A complete set of mixing data was obtained which can be used to calibrate thermal-hydraulic codes.