ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Han Zhang, Jiong Guo, Jianan Lu, Fu Li, Yunlin Xu, T. J. Downar
Nuclear Science and Engineering | Volume 190 | Number 2 | May 2018 | Pages 156-175
Technical Paper | doi.org/10.1080/00295639.2018.1426299
Articles are hosted by Taylor and Francis Online.
TINTE is a well-established code for the pebble-bed high-temperature gas-cooled reactor (HTR), including the complicated nuclear module and thermal-hydraulic module, which has been validated by experiments and widely used in the transient behavior simulation. However, only an operator splitting scheme is employed in TINTE to couple the neutronics and thermal hydraulics, and some physical quantities are not consistent in time. As a result, the accuracy and stability are limited by the additional error term derived from the unconverged physical term. In this paper, a fully implicit coupling method was investigated in which the coupled nonlinear fields at each time step are converged using Picard iterations. A physics-based preconditioning is proposed in the work here to further improve the computational performance of the fully implicit coupling method. Seven test problems are implemented based on a practical engineering model, rather than a simple model, to evaluate the performance of the Picard method. The numerical results show that the fully implicit Picard iteration method is more accurate and more stable, which permits longer time steps and a reduction of the computational burden for solving the coupled field equations. The computational efficiency is further enhanced when the physics-based preconditioning is utilized.