ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Han Zhang, Jiong Guo, Jianan Lu, Fu Li, Yunlin Xu, T. J. Downar
Nuclear Science and Engineering | Volume 190 | Number 2 | May 2018 | Pages 156-175
Technical Paper | doi.org/10.1080/00295639.2018.1426299
Articles are hosted by Taylor and Francis Online.
TINTE is a well-established code for the pebble-bed high-temperature gas-cooled reactor (HTR), including the complicated nuclear module and thermal-hydraulic module, which has been validated by experiments and widely used in the transient behavior simulation. However, only an operator splitting scheme is employed in TINTE to couple the neutronics and thermal hydraulics, and some physical quantities are not consistent in time. As a result, the accuracy and stability are limited by the additional error term derived from the unconverged physical term. In this paper, a fully implicit coupling method was investigated in which the coupled nonlinear fields at each time step are converged using Picard iterations. A physics-based preconditioning is proposed in the work here to further improve the computational performance of the fully implicit coupling method. Seven test problems are implemented based on a practical engineering model, rather than a simple model, to evaluate the performance of the Picard method. The numerical results show that the fully implicit Picard iteration method is more accurate and more stable, which permits longer time steps and a reduction of the computational burden for solving the coupled field equations. The computational efficiency is further enhanced when the physics-based preconditioning is utilized.