ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yunzhao Li, Zhipeng Li, Hongchun Wu, Youqi Zheng
Nuclear Science and Engineering | Volume 190 | Number 2 | May 2018 | Pages 134-155
Technical Paper | doi.org/10.1080/00295639.2017.1417346
Articles are hosted by Taylor and Francis Online.
To reduce the calculation effort and memory requirement for high-order PN expansion calculation in the Variational Nodal Method (VNM), the surficial irreducible basis functions based on the symmetry group theory have been employed to block-diagonalize one of the four nodal response matrices. Its effectiveness encourages our further investigation on the application of the symmetry group theory to volumetric expansion to block-diagonalize the remaining three of the nodal response matrices in this paper. By using the symmetry group theory, the neutron transport problem for each node can be decoupled into several independent subproblems as long as both the geometry and the material distribution of the node are symmetric. Each of these subproblems can be solved by using variational principles as in the traditional VNM, providing their nodal response matrices as the diagonal blocks of the corresponding entire ones. For hexagonal-z node, each nodal response matrix can be reduced into 16 diagonal blocks, among which only 12 have to be calculated due to the properly selected irreducible basis functions. In addition, it is also proved that the response matrices with anisotropic scattering can also be block-diagonalized as the same. Calculation results based on typical problems demonstrate that the new method reduces the time cost for the response matrice calculation by one order of magnitude compared with our previous work. For the total computing time, the speedup ratio is about 2 for P3 calculation and 4 for P5 calculation. Furthermore, almost 40% of the memory requirement can be saved.