ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Yu Weng, Fangfang Cao, Xiaobing Tuo, Hongfang Gu, Haijun Wang
Nuclear Science and Engineering | Volume 190 | Number 1 | April 2018 | Pages 93-104
Technical Paper | doi.org/10.1080/00295639.2017.1417345
Articles are hosted by Taylor and Francis Online.
In a 1250-MW pressurized water reactor (PWR), coolant is injected into the reactor vessel under accident conditions through the method of direct injection, which is the most important function of the emergency core cooling system. Since the problem has been found that safety injection start-up will have a significant thermal effect on the reactor’s internal system, a confirmatory study of an improved structure is required in the initial design stage. In this paper, the heat transfer and flow characteristics of the core barrel, the neutron shielding panels, and the radiation surveillance capsules are investigated by a scaled experiment combined with a numerical method to obtain the distribution of the wall temperature and the convective heat transfer coefficient on the outer wall of the reactor internals under different injection conditions. In addition, potentially dangerous parts have been pointed out, and dimensionless correlations are fitted to describe the heat transfer laws of key parts of reactor internals for use in reactor design. This research fills in the gaps in the study of heat transfer under direct injection of the reactor internals in a PWR, providing support for the safety of the reactor structure.