ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Dinkar Verma, Subhanker Paul, Pankaj Wahi
Nuclear Science and Engineering | Volume 190 | Number 1 | April 2018 | Pages 73-92
Technical Paper | doi.org/10.1080/00295639.2017.1407593
Articles are hosted by Taylor and Francis Online.
The nonlinear stability analysis of a boiling water reactor (BWR) is presented using a nuclear-coupled thermal-hydraulic reduced-order model. Unlike the existing studies, the effect of reactivity feedbacks (void reactivity feedback and temperature feedback) on nonlinear stability characteristics is presented in this work. The analytical model comprises point-kinetics equations with one group of delayed neutrons and fuel heat transfer having coupling with single-phase and two-phase one-dimensional reduced homogeneous thermal hydraulics wherein the two intrinsic reactivity feedbacks, namely, Doppler and void, provide the coupling feature. The primary objective of the present work is to delineate the stability and bifurcation characteristics of BWRs, and this is achieved in two levels. The first level is linear stability analysis wherein the linear stability boundaries are shown in parameter space constituted by two intrinsic reactivity feedbacks and in the subcooling versus phase change number plane as well. In the second level, we discuss the nonlinear characteristics, and the existence of subcritical and supercritical Hopf bifurcations is ascertained by a method of multiple time scales. Numerical simulations are performed to verify the resultant limit cycle behavior (arising from Hopf bifurcation) followed by the turning point bifurcations, and period-doubling bifurcation leading to chaos. Further, a parametric study is performed to show the effect of variation of various nondimensional parameters on the system dynamics and is depicted with the help of a criticality curve that delineates the two Hopf bifurcation regimes in parameter spaces formed by dimensionless reactivities (Doppler and void) and dimensionless numbers (subcooling and phase change). The study implies that the larger values of reactor power, phase change number, and subcooling number favor the supercritical Hopf bifurcation and hence assure globally safe reactor operation.