ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Balazs Molnar, Gabor Tolnai, David Legrady
Nuclear Science and Engineering | Volume 190 | Number 1 | April 2018 | Pages 56-72
Technical Paper | doi.org/10.1080/00295639.2017.1413876
Articles are hosted by Taylor and Francis Online.
A novel particle tracking framework is introduced in this paper that utilizes null-collisions to sample distance to collision in Monte Carlo particle transport problems. The sampling process is described in the most general form as it covers all of the main developments concerning the Woodcock method (delta tracking). We show that none of the previously suggested modifications are optimal in terms of either variance or efficiency. Variance analysis is provided for a general transport problem along with the estimation of computational cost. Simplified models with analytic solutions are further investigated and propositions for optimal settings are discussed based on the derived equations. A well-known variance reduction technique, exponential transform, is found to be a limiting case of the biased Woodcock tracking method and comparison shows the proposed framework may outperform the exponential transform in real-case scenarios.