ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Dean Wang, Sicong Xiao
Nuclear Science and Engineering | Volume 190 | Number 1 | April 2018 | Pages 45-55
Technical Paper | doi.org/10.1080/00295639.2017.1417347
Articles are hosted by Taylor and Francis Online.
In this paper, we propose a new prolongation method to replace the conventional flat flux ratio–based scaling approach of coarse-mesh finite difference (CMFD) for updating the flux. The new prolongation method employs a linear interpolation of the scalar flux differences at the coarse-mesh cell edges between the neutron transport and CMFD calculations. This linear prolongation scheme, called lpCMFD, can greatly improve the stability of CMFD, particularly for problems with large optical thickness. A detailed convergence study of lpCMFD based on Fourier analysis and numerical testing shows that lpCMFD is unconditionally stable and effective for a wide range of optical thicknesses.