ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Matteo Gamarino, Aldo Dall’Osso, Danny Lathouwers, Jan Leen Kloosterman
Nuclear Science and Engineering | Volume 190 | Number 1 | April 2018 | Pages 1-30
Technical Paper | doi.org/10.1080/00295639.2017.1417214
Articles are hosted by Taylor and Francis Online.
Nodal diffusion is currently the preferred neutronics model for industrial reactor core calculations, which use few-group cross-section libraries generated via standard assembly homogenization. The infinite-medium flux-weighted cross sections fail to capture the spectral effects triggered in the core environment by nonreflective boundary conditions at the fuel-assembly edges. This poses a serious limitation to the numerical simulation of current- and next-generation reactor cores, characterized by strong interassembly heterogeneity.
Recently, a spectral rehomogenization method has been developed at AREVA NP. This approach consists of an on-the-fly modal synthesis of the spectrum variation between the environmental and infinite-medium conditions. It uses information coming from both the nodal simulation and the lattice transport calculation performed to compute the standard cross sections. The accuracy of the spectral corrections depends on the choice of the basis and weighting functions for the expansion and on the definition of a realistic energy distribution of the neutron leakage. In this paper, we focus on the first aspect. Two tracks are researched: a combination of analytical functions (with a physically justified mode) and a mathematical approach building upon the Proper Orthogonal Decomposition. The method is applied to relevant pressurized-water-reactor benchmark problems. We show that the accuracy of the cross sections is significantly improved at reasonably low computational cost and memory requirement. Several aspects of the methodology are discussed, such as the interplay with space-dependent corrections. We demonstrate that this approach can model not only the spectral interactions between dissimilar neighbor assemblies but also the spectral effects due to different physical conditions (namely, multiplicative properties) in the environment and in the infinite medium.