ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Crash Course: The DOE’s Package Performance Demonstration
Inspired by a history of similar testing endeavors and recommended by the National Academy of Sciences and the Blue Ribbon Commission on America’s Nuclear Future, the Department of Energy is planning to conduct physical demonstrations on rail-sized spent nuclear fuel transportation casks. As part of the project, called the Spent Nuclear Fuel Package Performance Demonstration (PPD), the DOE is considering a number of demonstrations based on regulatory tests and realistic transportation scenarios, including collisions, drops, exposure to fire, and immersion in water.
Matteo Gamarino, Aldo Dall’Osso, Danny Lathouwers, Jan Leen Kloosterman
Nuclear Science and Engineering | Volume 190 | Number 1 | April 2018 | Pages 1-30
Technical Paper | doi.org/10.1080/00295639.2017.1417214
Articles are hosted by Taylor and Francis Online.
Nodal diffusion is currently the preferred neutronics model for industrial reactor core calculations, which use few-group cross-section libraries generated via standard assembly homogenization. The infinite-medium flux-weighted cross sections fail to capture the spectral effects triggered in the core environment by nonreflective boundary conditions at the fuel-assembly edges. This poses a serious limitation to the numerical simulation of current- and next-generation reactor cores, characterized by strong interassembly heterogeneity.
Recently, a spectral rehomogenization method has been developed at AREVA NP. This approach consists of an on-the-fly modal synthesis of the spectrum variation between the environmental and infinite-medium conditions. It uses information coming from both the nodal simulation and the lattice transport calculation performed to compute the standard cross sections. The accuracy of the spectral corrections depends on the choice of the basis and weighting functions for the expansion and on the definition of a realistic energy distribution of the neutron leakage. In this paper, we focus on the first aspect. Two tracks are researched: a combination of analytical functions (with a physically justified mode) and a mathematical approach building upon the Proper Orthogonal Decomposition. The method is applied to relevant pressurized-water-reactor benchmark problems. We show that the accuracy of the cross sections is significantly improved at reasonably low computational cost and memory requirement. Several aspects of the methodology are discussed, such as the interplay with space-dependent corrections. We demonstrate that this approach can model not only the spectral interactions between dissimilar neighbor assemblies but also the spectral effects due to different physical conditions (namely, multiplicative properties) in the environment and in the infinite medium.