ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Baoqing Liu, Ruijia Cheng, Yanan Zhang, Xiaoge Chen, Zilong Xu
Nuclear Science and Engineering | Volume 189 | Number 3 | March 2018 | Pages 290-300
Technical Note | doi.org/10.1080/00295639.2017.1394084
Articles are hosted by Taylor and Francis Online.
Fluid-elastic instability is the major factor in causing the vibration of tube bundles. Design guidelines on fluid-elastic instability in tube bundles is necessary to avoid damage due to excessive tube vibration. However, the design guidelines on fluid-elastic instability in tube bundles subjected to two-phase cross flow have no consistent conclusions. Accordingly, this technical note researches the vibration characteristics of three tube bundle distributions, namely, normal square tube bundles with pitch-to-diameter ratios of 1.28 and 1.32 and a normal triangular tube bundle with a pitch-to-diameter ratio of 1.32. Comparison of the present fluid-elastic threshold results with previously published data shows good agreement in single-phase flow. The effects of pitch-to-diameter ratio and tube bundle configurations on fluid-elastic instability induced by air-water cross flow were also compared and analyzed by measuring unstable behavior of tube bundles. It was found that fluid-elastic instability is more prone to occur with a decrease of pitch-to-diameter ratio and that the normal square tube bundle is more stable than the normal triangular tube bundle. From the perspective of the tube bundle configurations, it was recommended that the instability constant K in normal triangular and normal square tube bundles be 3.4 and 4.0, respectively.