ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Mike Kramer: Navigating power deals in the new data economy
Mike Kramer has a background in finance, not engineering, but a combined 20 years at Exelon and Constellation and a key role in the deals that have Meta and Microsoft buying power from Constellation’s Clinton and Crane sites have made him something of a nuclear expert.
Kramer spoke with Nuclear News staff writer Susan Gallier in late August, just after a visit to Clinton in central Illinois to celebrate a power purchase agreement (PPA) with Meta that closed in June. As Constellation’s vice president for data economy strategy, Kramer was part of the deal-making—not just the celebration.
Shi-Xiang Qu, Yan-Hua Wu, Zhao-Zhong He, Kun Chen
Nuclear Science and Engineering | Volume 189 | Number 3 | March 2018 | Pages 282-289
Technical Paper | doi.org/10.1080/00295639.2017.1405652
Articles are hosted by Taylor and Francis Online.
The vortex diode is a key candidate for the equipment of the passive safety system of the molten salt reactor. Experimental studies to determine the diodicity (ratio of reverse flow Euler number to the forward flow Euler number at the same Reynolds number) using high-temperature molten salt are strongly limited because of the huge technical effort and financial requirements for such studies; moreover, possible solutions that involve a scaling method that uses surrogate fluid to obtain the diodicity must be validated. To determine the diodicity and verify the scaling method, an experiment using one kind of heat transfer oil (Dowtherm-a) as the surrogate fluid was carried out. In addition, a computational fluid dynamics (CFD) simulation method was also adopted to study the flow characteristics in the vortex diode using three different fluids. The results show the following: it is feasible to study the diodicity of a vortex diode by a scaling experimental method using surrogate fluid, the CFD simulation method established in this paper can be applied to study the diodicity of the vortex diode, and the structure of the flow field and velocity distribution in the vortex chamber for reverse flow are independent of fluids and only related to the Reynolds number.