ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Shi-Xiang Qu, Yan-Hua Wu, Zhao-Zhong He, Kun Chen
Nuclear Science and Engineering | Volume 189 | Number 3 | March 2018 | Pages 282-289
Technical Paper | doi.org/10.1080/00295639.2017.1405652
Articles are hosted by Taylor and Francis Online.
The vortex diode is a key candidate for the equipment of the passive safety system of the molten salt reactor. Experimental studies to determine the diodicity (ratio of reverse flow Euler number to the forward flow Euler number at the same Reynolds number) using high-temperature molten salt are strongly limited because of the huge technical effort and financial requirements for such studies; moreover, possible solutions that involve a scaling method that uses surrogate fluid to obtain the diodicity must be validated. To determine the diodicity and verify the scaling method, an experiment using one kind of heat transfer oil (Dowtherm-a) as the surrogate fluid was carried out. In addition, a computational fluid dynamics (CFD) simulation method was also adopted to study the flow characteristics in the vortex diode using three different fluids. The results show the following: it is feasible to study the diodicity of a vortex diode by a scaling experimental method using surrogate fluid, the CFD simulation method established in this paper can be applied to study the diodicity of the vortex diode, and the structure of the flow field and velocity distribution in the vortex chamber for reverse flow are independent of fluids and only related to the Reynolds number.